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CHAPTER 1 INTRODUCTION 
 

Florida is experiencing rapid growth and development. This applies not only to urban areas, but 

to rural areas as well. This growth is now resulting in congestion on facilities that previously did 

not have any. One area that is becoming a concern, particularly in Florida, is rural areas 

transitioning into a more developed area. Access to these areas is usually by two-lane highways, 

but within these areas, there may be an occasional traffic signal, and possibly segments of 

multilane highway as well. 

 

The Highway Capacity Manual (HCM) contains an analysis procedure for basic two-lane 

highway segments that serves as the de facto standard in the U.S. However, this procedure does 

not provide for the capability of performing an integrated analysis of an extended length of two-

lane highway that also contains occasional signalized intersections. Some transportation 

professionals have indicated that a facility-based evaluation methodology for two-lane highways 

would be much more useful to them than the separate and somewhat disparate two-lane highway 

segment and signalized intersection analysis methodologies. The Highway Capacity and Quality 

of Service (HCQS) committee has officially acknowledged that the current procedure is not 

appropriate for analyzing low-speed, two-lane highways in developed areas, and also cannot 

account for the presence of a traffic signal (TRB, 2006). 

 

This issue was first addressed by the Level of Service (LOS) Task Team of the Florida 

Department of Transportation (FDOT). This task team consists of representatives from the 

FDOT central and district office who are in charge of the FDOT level of service analysis 

program in their respective geographic regions.  The issue first surfaced when representatives 

from District 6 (Miami) were struggling with how to analyze some major two-lane highways in 

their region that included a signalized intersection every 3-7 miles. Through discussions by this 

task team, it become clear that there was not an analysis procedure contained in the HCM that 

could be applied to this situation, nor was there any guidance on how to go about analyzing this 

situation.  This issue was brought forward to the Highway Capacity and Quality of Service 

(HCQS) committee in 2004.  The committee formally acknowledged that this situation was not 

addressed in the HCM, and added language to the manual to indicate this. In April of 2002, a 

National Cooperative Highway Research Program (NCHRP) project was awarded to the 

Midwest Research Institute (MRI) to address issues regarding the two-lane highway LOS 

methodology in the HCM 2000 (Harwood, et al. 2003), including developing some preliminary 

recommendations on potential analysis approaches for two-lane highways with occasional 

signalized intersections. In 2007, a research needs statement produced by the HCQS committee 

pointed out that intersection related operational treatments for signalized and un-signalized 

intersections and access points can have an effect on two-lane highway operations and that two-

lane highways should be analyzed as a facility, including highway sections and intersections 

(TRB, 2007).  

 

In addition to the limitations of a segment-only two-lane highway analysis procedure in the 

HCM, this procedure has been subject to debate and criticism in several other areas as well. 

Brilon et al. (2006) questioned the shape of the fundamental speed-flow diagram. Brilon (2006) 
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and Harwood (1999) et al. pointed out that the Passenger Car Equivalency (PCE) values might 

not correctly reflect the influence of heavy vehicles. Luttinen (2002), Van as (2006), Cabagan 

(2006), and Romana et al. (2006) have questioned the applicability of the current performance 

measures and have investigated alternative ones. Washburn et al. (2002) and Luttinen (2001) 

previously identified issues with the estimation of Percent Time Spent Following (PTSF) that 

can lead to unrealistic values. Some of these issues might also be related to the modeling 

capabilities of the software program (TWOPAS, discussed in the next section) used in the 

development of the HCM analysis procedure (Krummins, 1991; Dixon et al., 2006). 

 

Based on the simulation tool developed in CMS Project 2008-002, two-lane highways with 

occasional signalized intersections will be analyzed, or an analysis methodology for this situation 

will be developed, and the further investigation of the academic issues mentioned above will be 

pursued. Since the existing simulation technology does not have such modeling capability as the 

new one, the current research is limited to some extent. In the Yu study, which was under the 

supervision of Dr. Washburn, an analytical two-lane highway facility analysis procedure which 

took intersections into consideration was developed. Because no simulation program existed at 

the time with the capability to model the combination of two-lane highway segments and 

signalized intersections, the study was accomplished through a hybrid approach, in which the 

results of two different simulation programs were combined. However, the accuracy of the 

procedure is limited by the restrictions on combining results from disparate modeling programs. 

 

The new simulation tool now can directly model two-lane highway facilities in combination with 

various features (such as a combination of passing lanes, signalized intersections, etc.), and this 

will provide the seamless data for analyzing more complex two-lane highway facilities. An 

analytical methodology for analyzing two-lane highways is expected to be facility-based, 

accurate, efficient and flexible for the research on any type of two-lane highways. 
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CHAPTER 2 REVIEW OF EXISITING TWO-LANE HIGHWAY 

ANALYSIS METHODOLOGIES 
 

2.1 HCM 2010 

 

Chapter 15 of the Highway Capacity Manual (HCM) (TRB, 2010) provides an operations-

analysis methodology, which allows for a single direction of traffic flow for two-lane highway 

segments. The analysis procedures can also be applied to segments with the general terrain 

classification of level or rolling. It is stated that the directional methodology must be applied to 

segments in mountainous terrain or with grades of 3% or more with a length of 0.6 miles or 

more, and/or segments with a passing lane. The performance measures of Average Travel Speed 

(ATS) and Percent Time-Spent-Following (PTSF) are used to determine the level of service 

(LOS) for Class I two-lane highways, on which drivers care about mobility the most. Only PTSF 

is employed to determine the LOS for Class II two-lane highways with drivers’ less attention to 

efficient mobility. For the newly added Class III two-lane highways, which represent roadways 

in rural developed areas or scenic roadways, percent of free-flow speed (PFFS) is the primary 

service measure. The LOS criteria for two-lane highways are presented in Table 2-1. LOS F 

indicates the situation when the demand exceeds the capacity. 

 

Table 2-1. HCM LOS criteria for two-lane highways (TRB, 2010) 

LOS 

Class I Class II Class III 

Percent Time-

Spent-Following 

Average Travel 

Speed (mi/h) 

Percent Time-

Spent-Following 

Percent of Free-

Flow Speed 

A ≤ 35 > 55 ≤ 40 > 91.7 

B > 35–50 > 50–55 > 40–55 > 83.3–91.7 

C > 50–65 > 45–50 > 55–70 > 75.0–83.3 

D > 65–80 > 40–45 > 70–85 > 66.7–75.0 

E > 80 ≤ 40 > 85 ≤ 66.7 

 

The calculations for ATS and PTSF for directional two-lane highway segments without a passing 

lane are given by Equations 2-1 to 2-4. 

 

npoddd fvvFFSATS  )(00776.0  (2-1) 

  b

dd avBPTSF exp1100   (2-2) 

npdd fBPTSFPTSF   (2-3) 

100
d

d
d

FFS

ATS
PFFS  (2-4) 

 

where 

 ATSd = average travel speed in the analysis direction (mi/h) 

 FFSd = free-flow speed in the analysis direction (mi/h) 
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 vd = passenger-car equivalent flow rate for the peak 15-minute period in the 

analysis direction (pc/h) 

 vo = passenger-car equivalent flow rate for the peak 15-minute period in the 

opposing direction (pc/h) 

 fnp = adjustment for percentage of no-passing zones in the analysis direction 

 BPTSFd = base percent time-spent-following in the direction analyzed 

 PTSFd = percent time-spent-following in the direction analyzed 

 PFFSd = percent of free-flow speed in the direction analyzed 

 
For segments that contain passing lanes, the ATS calculated and PTSF values are further adjusted 

by Equations 2-5 and 2-6. 
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
2
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 (2-6) 

 

where 

 ATSpl = average travel speed for the entire segment including the passing lane (mi/h) 

 PTSFpl = percent time-spent-following for the entire segment including the passing 

lane 

 Lt = total length of analysis segment (mi) 

 Lu = length of two-lane highway upstream of the passing lane (mi) 

 Ld = length of two-lane highway downstream of the passing lane and beyond its 

effective length (mi) 

 Lpl = length of the passing lane including tapers (mi) 

 Lde = length of the passing lane 

 fpl = factor for the effect of a passing lane on average travel speed 

 

However, the analysis methodologies in Chapter 15 of the HCM 2010 are not suitable for 

analyzing situations where two-lane highways are combined with occasional signalized 

intersections. It is only suggested that isolated signalized intersections on two-lane highways can 

be evaluated with the methodology in Chapter 18 of the HCM 2010, “Signalized Intersections”. 

If two-lane highways are located in urban and suburban areas with multiple signalized 

intersections at spacing of 2.0 mi or less, the methodologies of Chapter 16 of the HCM 2010, 

“Urban Street Facilities”, and Chapter 17 of the HCM 2010, “Urban Street Segments” will be 

applied. 

 

2.2 Percent Delay Based Methodology 
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Yu and Washburn (2009) developed a facility-based evaluation methodology for two-lane 

highways. This methodology allows the various features (e.g., isolated intersections, passing 

lanes) that are typical to an extended length of two-lane highway to be analyzed as a single 

facility. Yu and Washburn’s method divides the facility into appropriate segments, and properly 

accounts for the operational effects of traffic flow transitioning from one segment to another. A 

two-lane highway with an isolated signalized intersection was used as a model in this study. For 

a two-lane highway facility with signalized intersections, the entire length of the facility is 

divided into three types of segments: the basic two-lane highway, the signal influence area, and 

the affected downstream segment. Percent delay (PD) was selected as the common service 

measure for the interrupted-flow facility of a two-lane highway with signalized intersections. 

According to the paper, percent delay is calculated by dividing delay by free-flow travel time. 

An excess of average travel time over free-flow travel time for drivers on a facility is defined as 

delay. PD is calculated by 

 

100

)(

,

,


 











 



SH
S

S

H

H

SH
SH

FFS

L

FFS

L

DD

PD  (2-7) 

 

where 

 PD = average percent delay per vehicle for the entire facility (%) 

 DH = average delay time per vehicle for the two-lane highway segment (s/veh) 

 DS = average delay time per vehicle for the signalized intersection influence area 

(s/veh) 

 FFSH = free-flow speed for the two-lane highway segment (ft/s) 

 FFSS = free-flow speed for the signalized intersection influence area (ft/s) 

 LH = length of the two-lane highway segment (ft) 

 LS = length of the signalized intersection influence area (ft) 

 

Percent delay mainly represents a driver’s perception of freedom during driving. A driver’s 

freedom may be affected by the presence of signal controls, restrictive road conditions (e.g., no-

passing zones), or opposing traffic, so these effects can also be reflected by percent delay. The 

LOS criteria for two-lane highway facilities, based on percent delay, are shown in Table 2-2. 

 

Table 2-2. LOS criteria for two-lane highway analysis 

Level of service Percent Delay (%) 

A ≤ 7.5 

B > 7.5 – 15 

C > 15 – 25 

D > 25 – 35 

E > 35 – 45 

F > 45 
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The authors used a simulation-based approach to develop the computational methodology, due to 

the difficulties of measuring the field data needed. A hybrid simulation approach combining 

CORSIM and TWOPAS was applied. The CORSIM simulation program was used to model a 

two-lane roadway segment that contains a signalized intersection. The downstream two-lane 

highway segment relative to the signalized intersection was then simulated by TWOPAS. The 

regression models for estimating the length of the effective upstream/downstream segment were 

developed based on the simulation results. Given the regression models, the process of 

determining the LOS of a two-lane highway facility could be outlined as follows: 

 

Step 1. Compute the lengths of the effective upstream and downstream segments, and then 

divide the facility into segments accordingly. 

Step 2. Determine the free-flow speed of the facility. 

Step 3. Compute the average travel speed on the basic two-lane highway segments. 

Step 4. Compute control delay at the signalized or unsignalized intersection influence area. 

Step 5. Compute the average travel speed on the affected downstream segment. 

Step 6. Determine the delay for each segment by calculating the difference between 

average and free-flow travel time, except for the intersection influence area, using 

the control delay as the segment delay. 

Step 7. Determine the percent delay by dividing the total delay by the total free-flow travel 

time along the whole facility, leading to the determination of the facility-level 

LOS. 

 

However, Yu and Washburn’s methodology was built upon the results of the hybrid simulation 

approach, therefore, it is still necessary to use field data or an integrated simulation model to 

verify and validate this methodology. 

 

2.3 South Africa Methodology 

 

The South African National Roads Agency Limited (SANRAL) (2006) developed an analytical 

methodology for determining the level of service of two-lane highways in rural areas. A 

macroscopic simulation model was developed and extensively calibrated by the field 

observations in this study. Although called a macroscopic simulation model, the simulation 

model actually used the microscopic method to simulate free-flow conditions and the 

macroscopic method to simulate queue formation/platooning, respectively. The simulated 

platooning can be further used to estimate traffic performance measures, such as average travel 

speed, density, percentage followers, and follower density. 

 

The researchers also investigated several alternative performance measures other than average 

travel speed and percent time-spent-following, which were employed in the HCM 2000 two-lane 

highway methodology. They identified follower density as the most suitable measure, for it 

contains the combined meanings of percentage followers, traffic flow, and average travel speed. 

None of these three measures can fully reflect a driver’s perception of LOS when traveling on a 

two-lane highway. To provide criteria for determining LOS based on follower density, the field 

observations were analyzed in two aspects. The researchers first developed a set of threshold 
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values for determining the follower-density-based LOS, and then estimated the minimum 

acceptable LOS below which the capacity expansion of a facility needs to be considered. The 

details of the criteria are presented in Tables 2-3 and 2-4. 

 

It should be noted that the calibration of the simulation model and the LOS criteria were based 

on the field data collected in South Africa. Therefore, the characteristics of driver behaviors there, 

such as passing on wide shoulders or in no-passing zones, should be attended to when applying 

the methodology developed in this study to other countries. 

 

2.4 Empirical Based Performance Measures 

 

2.4.1 The Montana studies 

 

It is well known that PTSF is difficult to measure in the field; therefore, some researchers tried to 

find alternative performance measures that are easier to collect on two-lane highways. Al-Kaisy 

and Sarah Karjala (2008) investigated six selected performance indicators: average travel speed, 

average travel speed of passenger cars, average travel speed as a percent of free-flow speed, 

average travel speed of passenger cars as a percent of free-flow speed of passenger cars, percent 

followers, and follower density. This empirical study was based on field data collected in the 

state of Montana at four different study sites. The relationships between performance measures 

and primary platooning variables such as traffic flow, heavy vehicle percentage, and no-passing 

zone percentage were examined. As a result, follower density was identified as the best measure 

for describing the level of service of two-lane highway operations, as it can reflect the traffic 

level that was indicated as a dominant factor that determines the performance of most highways. 

The authors stated that percentage of followers has no strong relationship with traffic level, as it 

depends mainly on time headway distribution. Ways to measure follower density in the field 

were also provided in the paper. However, the threshold values of follower density for 

determining the LOS of two-lane highway operations were not discussed in the paper. 

 

In 2010, Al-Kaisy and Freedman did another empirical investigation into a new measure, Percent 

Impeded (PI), which was also intended to evaluate performance of traffic operations on two-lane 

highways. PI was defined in the paper as a point measure indicating the percentage of vehicles 

that follow slower vehicles due to lack of passing opportunities on two-lane highways. The 

methodology for deriving PI is similar to the probabilistic approach for estimating PTSF in 

Durbin’s (2006) thesis. In order to capture driver’s perception of impedance experienced during 

driving, locations in the immediate upstream and downstream area of a passing lane where 

platoons break up and form were suggested as ideal for collecting data. Besides PI, the 

performance measures of percent followers, follower density, and ratio of average travel speed to 

free-flow speed were also examined in this study as well for reference. 

 

PI was eventually validated in this study. The empirical analysis showed that PI is more sensitive 

to platooning than other performance measures. In comparison, PI contains more information, 

due to relatively high correlations with other measures and platooning variables, except for 

traffic flow. Furthermore, PI is the only measure that shows the variation trend, corresponding to 



 

 

 

 

 

CMS Final Report  8 

the one of general performance measures for upstream and downstream of the passing lane, 

presented in the HCM 2000. Four multivariate regression models were developed to estimate the 

four performance measures using the data from one of the two study sites. The one for PI is 

given as 

 

654321 081.0794.0879.0016.00015.00012.04.11 XXXXXXPI   (2-8) 

 

where 

 X1 = volume in the same direction of travel 

 X2 = volume in the opposing direction of travel 

 X3 = percent no-passing 

 X4 = distance downstream of the passing lane 

 X5 = presence of merge effect (limited to the first station downstream of passing 

lane) 

 X6 = percentage of trucks 

 

Variables X1 and X2 were found to be insignificant at the 95% confidence level. 

The LOS criteria based on PI were not discussed in the paper, and as the authors expected, 

further investigation into the performance measure PI for a complete analytical methodology is 

needed. 

 

2.4.2 The Oregon study 

 

The Facility Analysis and Simulation Team at the Oregon Department of Transportation (2010) 

established several models for predicting alternative two-lane highway performance measures, 

due to the difficulty in collecting field data of PTSF. Several performance indicators and 

platooning variables that could describe two-lane highway operations were selected. After that, 

field data were collected from 13 sites in Oregon for model development, and another 4 sites in 

Oregon for model validation. Based on the field data, the prediction models were formulated and 

finally validated. 

 

The performance indicators included in this study were average travel speed, average travel 

speed of passenger cars, average travel speed as a percent of free-flow speed, average travel 

speed of passenger cars as a percent of free-flow speed of passenger cars, percent followers, and 

follower density. All the indicators were directly or indirectly obtained from the field data. It 

should be noted that follower density in this study was measured by 

 

speed ravelfollower t Average

followers ofNumber 
densityFollower   (2-9) 

 

To establish the models, platooning variables were collected as well and served as the 

independent variables in the models, including traffic flow, percent heavy vehicles, standard 

deviation of free flow speeds, percent no-passing zones, and terrain. 
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As a result of statistical analysis, follower density was finally selected as the best performance 

indicator. Further, the researchers found that follower density has a wide spectrum, which makes 

the level of service categories easy to determine. The final model is given in Table 2-7. 

 

This promising estimate model is of great importance, as only a few studies have been done on 

follower density, especially on the basis of field data. The conclusions of this study may be used 

as references when developing two-lane highway simulation models and analytical 

methodologies. 

 

2.5 Driver Comfort Service Measures 

 

The HCM 2000 uses density as the key indicator to determining the level of service of traffic 

operations on both rural and urban freeways. However, Kim et al. (2003) pointed out that 

although density is ideal for assessing urban freeways which usually need to accommodate high 

demands, it is uncertain whether density is appropriate for assessing rural highways, where 

“driver comfort” is more important to drivers. Therefore, the researchers proposed three 

measures which are intuitively related to driver comfort: acceleration noise, number and duration 

of cruise control applications, and percent time-spent-following. In their initial study, CORSIM 

was used to generate the required data instead of field data. The step-by-step data were processed 

to derive the proposed measures, as summarized below: 

 

 Acceleration noise. This is calculated as the standard deviation of the acceleration for 

each vehicle over the duration of the trip. 

 Number and duration of cruise control applications. A cruise control emulator was 

developed and incorporated into CORSIM. Next, the proportion of time the cruise control 

was used and the number of cruise control applications was recorded and reported. 

 Percent time-spent-following. This following scheme, developed by Halati et al. (1997), 

was used to determine when a vehicle is identified as a follower. The percent time-spent-

following was then determined. 

 

The relationships between traffic volume and the proposed measures were determined by 

plotting the processed data. According to these relationships, the authors concluded that 

acceleration noise can be directly used to establish LOS criteria for rural highways. The other 

two measures considered were found to require further investigations. 

 

Although the proposed measures are promising, field data are needed to confirm the conclusions 

in the paper, as all the findings were based on the simulation data. Also, because the measures in 

the paper apply to all rural highways rather than only two-lane rural highways, it is necessary to 

consider the characteristics of two-lane highways when utilizing Kim et al.’s work in two-lane 

highway analysis. 
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CHAPTER 3 DEVELOPMENT OF AN ANALYTICAL 

METHODOLOGY FOR TWO-LANE HIGHWAY FACILITY ANALYSIS 
 

The new simulation tool developed, as described in CMS Project 2008-002, was used to develop 

an analytical methodology for analyzing two-lane highway facilities with various features, 

especially two-lane highway segments with signalized intersections. This methodology is 

generally consistent with the HCM methodologies for basic two-lane highway segments and 

signalized intersections. 

 

3.1 Outline of Methodology 

 

The new methodology used the Yu and Washburn study (2009) as the starting point. The main 

idea of this methodology is to divide a two-lane highway facility into appropriate segments with 

uniform features, then evaluate traffic operations on each segment by the unified performance 

measures, and finally aggregate performance measures over the entire facility and obtain LOS 

accordingly. Therefore, one of the key issues in this study is to properly segment a two-lane 

highway facility combined with signalized intersections. To achieve this objective, two primary 

tasks were completed as follows: 

 

1. Determine upstream effective length of signalized intersection. 

The presence of a signalized intersection can significantly impact two-lane highway 

operations. Vehicles that are approaching the signalized intersection will start to decelerate and 

prepare to stop if facing red, or decelerate to follow a discharging queue during green. This 

causes interruptions to traffic flow. In situations where a left-turn bay is not present on the 

intersection approach, mainline traffic may also be affected by turning vehicles even during 

green time. Therefore, it is essential to know the location where such effects to mainline traffic 

become significant. The distance between this critical location and the intersection approach stop 

bar is defined as upstream effective length. 

 

2. Determine downstream effective length of signalized intersection. 

The presence of signalized intersections may also change the downstream traffic flow 

characteristics of a signal. In addition, downstream traffic flow will be affected by the right-turn 

and left-turn vehicles from minor streets. Traffic flow will generally return to its former state 

after some distance downstream of the signal. The location at which traffic flow returns to 

“equilibrium” is identified as the end of the downstream effective length. 

 

Another key issue is to select appropriate service measure(s) for evaluating the traffic operations 

on two-lane highways with various features. ATS, PTSF, and PFFS are employed in the current 

HCM methodology (TRB, 2010) for determining the level of service on basic two-lane 

highways. However, as control delay serves as the service measure for evaluating signalized 

intersections, those three service measures cannot be applied to complex two-lane highway 

facilities. The potential service measure percent delay was examined for its efficacy of 

representing two-lane highway operations, which is also described in this Chapter. 
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3.2 Simulation Experiments 

 

In the Yu and Washburn (2009) study, CORSIM was used to develop the upstream effective 

length model, while TWOPAS was employed to derive the downstream effective length model. 

As the capability of modeling two-lane highway segments has now been incorporated into 

CORSIM, a complete two-lane highway facility with a signalized intersection can be set up in 

CORSIM for data collection. 

 

3.2.1 Testing facility 

 

The experimental design primarily focuses on two-lane highway segments in combination with 

signalized intersections. Therefore, a two-lane highway facility including an intersection is 

analyzed. 

 

The testing facility is 8-mi long, on level terrain, with no passing lane present, and with a 

signalized intersection at the 4-mi point. The free-flow speed is 60 mi/h on the major two-lane 

highway segment, and 45 mi/h on the intersecting road. Passing is allowed along the facility 

except for the NETSIM links that are used for modeling the signalized intersection. It should be 

noted that the presence of a left-turn bay on the signalized intersection approach could result in 

some difference in upstream effective length, compared with the situation of a no left-turn bay. 

When the through flow rate in the opposing direction is relatively high and no protected left-turn 

phase is provided, the availability of a left-turn bay can reduce the impedance to mainline flow 

caused by left-turn vehicles that are waiting for acceptable turning gaps. Assuming the storage of 

the left-turn bay is sufficient for the left-turn demand, the flow rate in the opposing direction will 

have little effect on the through movement in the analysis direction. Thus, it is not necessary to 

consider the opposing flow rate in the model for upstream effective length for the situation of a 

left-turn bay on the intersection approach. Based on such considerations, the models for 

estimating upstream effective length were developed separately for both conditions, with and 

without a left-turn bay. According to the guidelines provided by the Delaware DOT (2009) 

defining no-passing zone extension for departure legs at an intersection, 200-ft NETSIM links 

were used in modeling the signalized intersection for the mainline. The minimum passing sight 

distance requirement used in passing models developed in Chapter 3 prevent passing maneuvers 

happening near the intersection even with the only 200-ft long no-passing markings upstream of 

the signal. The observations of the simulation animations also confirmed that the design of 200-ft 

NETSIM links are reasonable. 

 

A 5-mi long lead-up segment is included for obtaining well-developed platoons that will enter 

the facility where the data were collected. And in order to prevent passing vehicles aborting their 

passes or expediting their passes due to the end of a passing zone, a 5-mi long follow-up segment 

is used. The follow-up segment also serves as the lead-up segment for the opposite direction. 

Passing is allowed on both the lead-up segments and the follow-up segments. However, the 

outputs on these segments were excluded in the following analysis. 
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3.2.2 Simulation scenarios 

 

It has been discussed and identified in the Yu and Washburn study (2009) that the key factors 

that may affect the length of upstream effective length are peak volume, D-factor, percentages of 

left-turn and right-turn movements, effective green time, cycle length and availability of left-turn 

bay. Therefore, the simulation scenarios established in this study were developed based on the 

above contributing factors. 

 

1. Peak volume 

Peak hour traffic is primarily used in traffic analysis as it represents the worst case for 

traffic operations and highest capacity demands (TRB, 2010). In this study, 15-min peak flow 

rates were used in the simulation runs. Although two-lane highways usually serve relatively low 

traffic demands, a wide range of flow rates are included in the simulation experiments to fully 

capture the relationship between flow rate and upstream/downstream effective length. The minor 

street flow rate was set to half of the major street flow rate in all the experiments. 

 

2. Heavy vehicle percentage. 

Heavy vehicles such as trucks, buses and recreational vehicles are generally large, and 

have lower performance in braking and accelerating, especially on grades. The existence of 

heavy vehicles in the traffic stream can significantly impact traffic operations. In the passing 

models developed in Chapter 3, the size of the leading vehicle may affect its following vehicle’s 

desire to pass. Therefore, different options for heavy vehicle percentages are preferred in the 

simulation experiments. CORSIM currently employs nine vehicle types in FRESIM (where the 

two-lane highway modeling capability was incorporated), four of which represent trucks: Type 3, 

Type 4, Type 5, and Type 6 (Table 4-1). As Type 6 trucks (i.e., double-bottom trailer trucks) 

have much lower desired speeds
1
 than other types of trucks, even on level terrain, only Type 3, 

Type 4 and Type 5 trucks were included in the experiments. It should be noted that the NETSIM 

component uses a different numbering system for vehicle types (Table 3-1). The vehicle type 

number of a specific vehicle on a two-lane highway segment (FRESIM link) will change into the 

corresponding vehicle type number once it moves onto a NETSIM link, and vice versa. 

 

Table 3-1. CORSIM truck types 

Performance description FRESIM vehicle type NETSIM vehicle type 

Single-unit truck 3 2 

Semi-trailer truck with medium load 4 6 

Semi-trailer truck with full load 5 7 

Double-bottom trailer truck 6 8 

 

3. D-factor 

                                                 
1
 In CORSIM, the desired speed of a vehicle is a function of link free-flow speed and driver type. 
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The D-factor represents the proportion of traffic traveling in the peak direction. When a 

left-turn bay is absent in the analysis direction, the traffic in the opposing direction may restrict 

left-turning opportunities in the analysis direction, and as a result, increase the possibility of 

upstream queuing. Given this consideration, the D-factor is expected to be considered in the 

regression model for estimating upstream effective length if no left-turn bay is provided. 

 

4. Percentages of left-turn and right-turn movements 

Different turning percentage options were applied in the simulation experiments, as they 

are also an important traffic characteristic. Even with the presence of a turn bay, the lane 

changing maneuver or decelerating maneuver executed by turning vehicles may also influence 

the through movements. In order to keep the mainline flow rate the same upstream and 

downstream of the intersection, the volumes turning onto the mainline at the intersection were 

set equal to the volumes turning off the mainline at the intersection. 

 

5. Signal timing 

For two-lane highway facilities, it is preferred to keep mainline traffic moving without 

interruption for as long as possible. Therefore, a fully-actuated signal timing plan is more 

appropriate and efficient for a signalized intersection on two-lane highways. Three two-phase 

signal timing plans were implemented in the experiments to obtain different average effective 

green time and average cycle length, which were used for the regression model development. 

 

6. Availability of left-turn bay 

The models for upstream effective length estimation were developed separately for the 

situation with a left-turn bay and the one without a left-turn bay. As discussed before, the D-

factor was added as a variable in the regression model for the situation without a left-turn bay to 

capture the impacts on upstream queuing by opposing flow rate. 

 

Based on the combination of different inputs, a total of 90 scenarios with a left-turn bay and 216 

scenarios without a left-turn bay were established in CORSIM, and 10 iterations of each scenario 

were run. The simulation time period is 15 minutes for each run. The details of the experimental 

design are listed in Tables 3-2 to 3-4. It should be noted that in the scenarios without a left-turn 

bay, the two-way flow rate of 2000 veh/h (50/50 directional split) on the major road will result in 

continuous queue growth. It was identified from the CORSIM experiments that growing queues 

occur when both directional flow rates reach 900 veh/h. Therefore, in order to avoid unrealistic 

results, the highest flow rate option of 1000 veh/h for the analysis direction was eliminated from 

the experiments without a left-turn bay. 

 

Table 3-2. Experimental design for the scenarios with a left-turn bay 

 
Option 1 Option 2 Option 3 Option 4 Option 5 

Flow rate (analysis direction) 

(veh/h) 
200 400 600 800 1000 

Heavy vehicles (%) 0 6 12 - - 

Signal timing plan Plan I Plan II Plan III - - 

Left-turn vehicles (%) 5 10 - - - 
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Table 3-3. Experimental design for the scenarios w/o a left-turn bay 

 
Option 1 Option 2 Option 3 Option 4 

Flow rate (analysis direction) (veh/h) 200 400 600 800 

D-factor 0.5 0.6 0.7  

Heavy vehicles (%) 0 6 12 - 

Signal timing plan Plan I Plan II Plan III - 

Left-turn vehicles (%) 5 10 - - 

 

Table 3-4. Signal timing plans 

 Major phase 

(permitted left-turn phase) 

Minor phase 

(permitted left-turn phase) 

 
Greenmax 

(s) 

Greenmin 

(s) 

Yellow 

(s) 

All-Red 

(s) 

Greenmax 

(s) 

Greenmin 

(s) 

Yellow 

(s) 

All-Red 

(s) 

Plan I 44 10 4 1 22 6 4 1 

Plan II 38 10 4 1 19 6 4 1 

Plan III 50 10 4 1 25 6 4 1 

 

3.3 Vehicle Trajectory Based Data Processing Procedure 

 

In the previous methodology developed by Yu and Washburn (2009), the variation of link-based 

average speed was used to determine upstream/downstream effective length. For the upstream 

effective length component, a 3-mi long facility with a signalized intersection at the 1-mi 

location in CORSIM was used to produce the simulation data. Then, the upstream section was 

divided into 132-ft long links
2
 for identifying the variation of average speed versus distance. For 

the downstream effective length component, the two-lane highway simulation program 

TWOPAS was employed to obtain the simulation data. To replicate the traffic platooning 

characteristics downstream of the signal, the TWOPAS input Entering Percent Following (EPF) 

was estimated based on Dixon et al.’s (2003) methodology
3
. Next, the variation of average speed 

was used to determine downstream effective length. This hybrid simulation approach was 

applied because no simulation tool that is able to model both signalized intersection and two-lane 

highway segment existed at that time. 

 

In this study, using the two-lane highway modeling capability now incorporated into CORSIM, 

the previous models were expected to be validated by using the new simulation program. And for 

more accurate results, vehicle trajectory information is desired. The rules for determining the 

vehicles that are affected by the presence of a signal were added to a tool named VTAPE 

(Vehicle Trajectory Analysis for Performance Evaluation). VTAPE can process CORSIM TS0 

                                                 
2
This distance was determined based on trying to segment to a short distance, in order to obtain the upstream 

effective length as accurately as possible. Meanwhile, this distance cannot be so short that a vehicle could pass 

completely over a link in one time step (1 second). 
3
 Dixon et al. (2003) developed a method to estimate EPF immediately downstream of a signal by analyzing the 

downstream flow profile as a function of signal timing characteristics.  From this, the effect of the signal on the 

downstream segment can be assessed by using the relationship between EPF and PTSF. 
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files, which contain time step data for each simulated vehicle. More detail about the rules 

implemented is included in the following sections. 

 

3.3.1 Determine upstream effective length 

 

In order to obtain the average result of upstream effective length in a certain scenario, it is 

important to find out where each affected vehicle begins to decelerate significantly due to the 

presence of a downstream intersection. Based on the vehicle trajectory information, two types of 

upstream affected vehicles were identified. 

 

1. Type 1 upstream affected vehicle 

This type of affected vehicle is the first to stop at the stop bar. It usually starts to 

decelerate for the yellow or red as it is getting close to the intersection. Normally, decelerating 

maneuvers under such a situation are completed within 4 to 5 seconds (Figure 3-1 for example). 

 

 

Figure 3-1. Trajectories of Type 1 upstream/downstream affected vehicle 

 

2. Type 2 upstream affected vehicle 

This type of affected vehicle joins the queue at the stop bar. When there is already a 

queue at the stop bar, either stopped during red time or has not been discharged completely 

during green time, the upcoming vehicles will be aware of the existence of the queue and prepare 

to decelerate earlier than the type 1 upstream affected vehicle. Under CORSIM’s modeling logic, 

this type of affected vehicle usually starts to decelerate at no less than 4 ft/s
2
 for several 

consecutive seconds (Figure 3-2 for example). 
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Starting point of the 

upstream effective length

Intersection

End point of the downstream 

effective length

Cooperates with a passing 

maneuver

 

Figure 3-2. Trajectories of Type 2 upstream/downstream affected vehicle 

 

Therefore, the criteria for locating an upstream vehicle’s critical position (i.e., the position where 

a vehicle starts to be affected by the signal) include two requirements: 

 

 The vehicle must be no more than 2000 ft upstream of a signalized intersection. The 

threshold of 2000 ft was determined based on the longest upstream effective length of 

around 1700 ft from the current experiments. The decelerating operations related to 

passing maneuvers are very unlikely to happen within this distance. 

 The vehicle must decelerate at no less than 4 ft/s
2
 at the current time step and the 

previous time step, and then the position at the previous time step is recorded as the 

critical position. 

 

A number of observations of the simulation animations confirmed the effectiveness of the 

criteria. 

 

In each scenario, the critical position for each upstream affected vehicle was collected. The 

average value was calculated from all of the individual vehicle values and used for the overall 

upstream effective length. 

 

3.3.2 Determine downstream effective length 

 



 

 

 

 

 

CMS Final Report  17 

Determining the downstream effective length is largely a function of the definition of when a 

vehicle that has departed from an upstream signal queue returns to normal two-lane highway 

operation. In the Yu and Washburn study (2009), the average speed difference (based on 100-ft 

long links) between the situation with an intersection and the situation without an intersection 

was used to determine downstream effective length. The location where the average speed 

difference falls below a certain threshold is considered as the end of the downstream effective 

length. However in this study, the downstream effective length is determined from an individual 

vehicle perspective for more accuracy. Extensive research on the vehicle trajectory data indicates 

that a downstream vehicle can be considered as having left the intersection downstream effective 

area when it travels stably. Two stable situations may exist: 1) If a vehicle is not in a following 

mode, it is considered as traveling stably when it reaches its own desired speed and stops 

accelerating for several successive seconds; 2) If a vehicle is in a following mode, it should at 

least reach the desired speed for driver type 1 and stop accelerating for several successive 

seconds as an indicator for being stable. Two types of downstream affected vehicles were 

identified according to the vehicle trajectory information. 

 

1. Type 1 downstream affected vehicle 

This type of affected vehicle is the one that has completely stopped for the red before 

traveling downstream of the signal. It could be a vehicle from upstream flow or a turning vehicle 

from the intersecting road. This type of vehicle usually accelerates from zero speed when being 

discharged (Figure 3-1 for example). 

 

2. Type 2 downstream affected vehicle 

This type of affected vehicle may join a discharging queue at the intersection during the 

green, or turn from the intersecting road without stopping at the intersection. In this case, the 

vehicle normally accelerates from a relatively lower speed after entering the downstream 

segment (Figure 3-2 for example). 

 

It should be noted that the maximum acceleration for Type 5 trucks in CORSIM is 1 ft/s
2
. 

Therefore, when heavy vehicles are involved in a scenario, the average downstream effective 

length is extended. 

 

The criteria for locating the end of the downstream effective length for each downstream affected 

vehicle also include two requirements: 

 

 The vehicle must be delayed by an intersection. If a vehicle’s speed is lower than the 

driver type 1’s desired speed when it first gets onto the downstream link, it is considered 

as an intersection-delayed vehicle. Unaffected vehicles with driver types other than 1 

normally travel at their own desired speeds, or at driver type 1’s desired speed when in a 

platoon led by a driver type 1 vehicle. All turning vehicles are considered as downstream 

affected vehicles, as they always decelerate to a speed less than driver type 1’s desired 

speed for the turning movement, even for the vehicles with the most aggressive driver 

type.  
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 The vehicle must reach the desired speed for driver type 1, and travel constantly or 

decelerate within two consecutive seconds. Based on the examination of a considerable 

amount of vehicular data, it was found that a vehicle may not reach a stable level if it 

stops accelerating for just 1 second. And a vehicle that has become stable may sometimes 

decelerate a little bit to maintain a safe headway when in a platoon. Within any 

consecutive 3 seconds after being stable for a vehicle, if its acceleration is zero or 

negative in any 2 seconds, it may have a positive acceleration for the third second. 

Therefore, 2 seconds for checking a vehicle’s acceleration is appropriate for determining 

whether it has become stable or not. The position at the first time step of the two 

consecutive time steps is recorded as the ending position of the downstream effective 

length. 

 

The ending position of the downstream effective length for each downstream affected vehicle 

was then determined based on the above criteria. For each scenario, the average value was 

calculated to obtain the overall downstream effective length. 

 

3.4 Model Development 

 

The development of mathematical models for estimating upstream and downstream effective 

length was performed through regression analysis, and is discussed in this section. For each 

scenario, the upstream/downstream effective lengths for all the vehicles were averaged over 10 

runs. The aggregate results were used in the regression model development. 

 

3.4.1 Upstream effective length model development 

 

The regression model for estimating upstream effective length was expected to be similar to the 

form developed by Yu and Washburn (2009), as follows (using generalized notation): 

 

  l m
q

m

k

llm XXY   (3-1) 

where Y is the dependent variable, α is the intercept, βlm, k, and q are parameters, and Xl and Xm 

are the independent variables. 

 

The model for estimating the upstream effective length of a signal when left-turn bay is present 

was developed based on 90 scenarios, as follows: 
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 Leneff_up = upstream effective length of signalized intersection (ft) 

 vd = flow rate in the direction analyzed (pc/h)
4
 

 Cycle = average cycle length (s) 

 %LT = percentage of left-turn vehicles in the direction analyzed 

 g = effective green time 

 

The statistical results are shown in Table 3-5. From Table 3-5, it can be seen that all the 

explanatory variables are statistically significant at a 95% or greater confidence level. The 

coefficient signs are logical; for example, increasing flow rate in the analysis direction or 

extending cycle length will increase the upstream effective length, increasing the percentage of 

left-turn vehicles or the effective green time will decrease the upstream effective length. With an 

adjusted R-squared value of 0.9798, it is indicated that 97.98% of the variance in the dependent 

variable (upstream effective length) was explained by variations in the independent variables. 

The well-behaved model residuals, illustrated in Figure 3-3, confirm the goodness-of-fit of the 

model as well. The relationships between the explanatory variables and the response are 

generally consistent with the previous model. 

 

Table 3-5. Statistical results of the upstream effective length model with a left-turn bay 

Explanatory variables Parameter t-value Adjusted R
2
 

Constant 266.6569 16.7318 

0.9798 

(vd /100)
2 

3.0468 22.8773 

Cycle 8.6256 10.4711 

(vd /100) × %LT -0.9715 -9.5560 

g -14.1018 -14.1122 

 

                                                 
4
In this study, the passenger car equivalent factors used to convert mixed vehicle flows into an equivalent passenger 

car flows are 2.2 for Type 3 trucks, 2.5 for Type 4 trucks, and 2.8 for Type 5 trucks. 
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Figure 3-3. Residual histogram of the upstream effective length model with a left-turn bay 

 

The model for determining upstream effective length under the situation of no left-turn bay takes 

the D-factor into consideration. However, the D-factor is not directly used in the model, but 

reflected in the variable of opposing flow rate. The model was developed based on 216 

scenarios, as follows: 
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where 

 Leneff_up = upstream effective length of signalized intersection (ft) 

 vd = flow rate in the direction analyzed (pc/h) 

 vo = flow rate in the opposing direction (pc/h) 

 Cycle = average cycle length (s) 

 %LT = percentage of left-turn vehicles in the direction analyzed 

 

The statistical results are listed in Table 3-6. It can be seen from Table 3-6 that all the 

explanatory variables are statistically significant at a 95% or greater confidence level. A new 

variable describing the opposing flow rate is included in this model. It should be noted that 

effective green time is not included in this model. Intuitively, one would consider this variable to 
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have a significant effect; however, since the actuated signal timing parameters were set up to 

provide essentially “optimal” operation, the cycle length variable alone is sufficient to also 

account for the effect of green time. The analyst should be aware that if they are analyzing a 

situation where the signal timing is not optimized for the traffic flow conditions, the results from 

the upstream effective length model may not be completely accurate. The coefficient sign of the 

variable describing opposing flow rate is reasonable, because increasing the opposing flow rate 

will reduce the turning opportunities for the left-turn vehicles in the analysis direction, leading to 

the increment in the upstream effective length when no left-turn bay is provided. The coefficient 

signs for the variables cycle length and percentage of left-turn vehicles are contrary to the ones in 

the model for the situation with a left-turn bay. For the variable cycle length, although a longer 

cycle length is usually considered as the cause of increased delay and queues, it may offer more 

turning possibilities for waiting left-turn vehicles, and consequently allow the following through 

vehicles to pass through the intersection. This positive influence may offset the negative 

influence created by longer cycle lengths in other aspects. In this way, the inverse relationship 

between upstream effective length and average cycle length could be explained. For the variable 

percentage of left-turn vehicles, it is logical that under the situation without a left-turn bay, 

increasing the proportion of left-turn vehicles will increase the upstream effective length, 

because left-turn vehicles have to yield the opposing through traffic when no protected left-turn 

phase is provided. 

 

Table 3-6. Statistical results of the upstream effective length model w/o a left-turn bay 

Explanatory variables Parameter t-value Adjusted R
2
 

Constant 412.0206 12.6299 

0.9387 

(vd /500)
3 

57.9968 15.9946 

(vo /500)
3 

85.1575 19.9209 

Cycle -3.6558 -4.6047 

[(vd /500) × %LT]
3
 0.0327 10.1975 

 

With the adjusted R-squared value of 0.9387, it is indicated that 93.87% of the variance in the 

dependent variable (upstream effective length) was explained by variations in the independent 

variables. The well-behaved model residuals, illustrated in Figure 3-4, confirm the goodness-of-

fit of the model as well. 
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Figure 3-4. Residual histogram of the upstream effective length model w/o a left-turn bay 

 

It should be noted that in some very rare cases where no vehicles turn left from the mainline 

(e.g., left turn is prohibited), it is appropriate to apply the model for the with left-turn bay 

situation to estimate the upstream effective length even no left-turn bay is provided, because it is 

no longer realistic to have a penalty for opposing flow in such situations to determine the 

upstream effective length. 

 

A comparison was made between the two upstream effective length models (i.e., with and 

without a left-turn bay) using the same combination of inputs. The results confirm the 

expectation that the no left-turn bay scenario would always result in a longer upstream effective 

length than the with left-turn bay scenario (Figure 3-5). 
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Figure 3-5. Comparison of predicted upstream effective lengths using two estimation models 

 

3.4.2 Downstream effective length model development 

 

The regression model for estimating downstream effective length is in the similar form described 

in Equation 3-1. Initially, models were developed separately for the scenarios with a left-turn bay 

and the scenarios without a left-turn bay, which is similar to the upstream effective length model 

development. However, the experiment results showed that an upstream left-turn bay has little 

impact on the downstream effective length. Therefore, the simulation data from both facility 

conditions were combined and used to develop one model for estimating downstream effective 

length. 

 

The model for estimating downstream effective length of signal was developed based on 306 

scenarios, as follows: 
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where 

 Leneff_down = downstream effective length of signalized intersection (ft) 

 Vd = flow rate in the direction analyzed (veh/h) 

 %HV = percentage of heavy vehicles 

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

U
p
s
tr

e
a
m

 e
ff

e
c
ti
v
e
 l
e
n
g
th

 (
ft

) 

Directional flow rate (pc/h) 

No left-turn bay situation

With left-turn bay situation



 

 

 

 

 

CMS Final Report  24 

 Cycle = average cycle length (s) 

 %LT = percentage of left-turn vehicles in the direction analyzed 

 g = effective green time 

 

The statistical results are listed in Table 3-7. From Table 3-7, it can be seen that all the 

explanatory variables are statistically significant at a 95% or greater confidence level. With an 

adjusted R-squared value of 0.9014, it is indicated that 90.14% of the variance in the dependent 

variable (downstream effective length) was explained by variations in the independent variables. 

The well-behaved model residuals, illustrated in Figure 3-6, confirm the goodness-of-fit of the 

model as well. 

 

Table 3-7. Statistical results of the downstream effective length model 

Explanatory variables Parameter t-value Adjusted R
2
 

Constant 701.3438 24.2451 

0.9014 

(V /100)
 

51.0164 7.9484 

%HV
 

42.3531 41.8964 

Cycle 13.8329 3.9211 

(V /100)× %LT -1.7009 -5.0018 

g -16.7603 -2.7970 
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Figure 3-6. Residual histogram of the downstream effective length model 

 

The relationships between the explanatory variables and the response are as expected. The 

positive relationship between downstream effective length and flow rate can be explained in that 
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increasing flow rate results in a longer average queue length upstream of the signal. The longer 

an upstream queue is, the more time is required for the queued vehicles to accelerate and 

disperse, which eventually leads to an increasing downstream effective length. A similar reason 

can also be used in explaining the positive relationship between cycle length and downstream 

effective length. The existence of heavy vehicles in the traffic stream is another reason for the 

increment of downstream effective length, because of the relatively lower acceleration capability 

of heavy vehicles. In contrast, an increasing number of left-turn vehicles can reduce downstream 

effective length. Within the current experiments, the turning flow rate from the intersecting roads 

are as the same as the mainline turning flow rate in order to keep the conservation of mainline 

flow. However, as they are discharged during different phases, the average number of queued 

vehicles entering the mainline downstream segment actually decreases. Effective green time for 

the mainline through movement also plays an inverse role in downstream effective length. Given 

a certain cycle length, a more effective green time means a reduced chance of queue build-up 

during a cycle. The factor opposing flow rate was also examined as an explanatory variable, as 

initially it was thought that this may affect the acceleration and dispersion of upstream queues. 

However, as was the case for the left-turn bay variable, this variable was found to have very little 

effect on the model results. Therefore, this variable was eliminated from the final model. 

 

3.5 Examination of the Efficacy of Percent Delay as an Appropriate Service Measure 

for Two-Lane Highway Facilities 

 

Yu and Washburn (2009) proposed Percent Delay (PD) as the primary service measure for a 

two-lane highway with a signalized intersection. PD is believed to be able to represent a driver’s 

perception of freedom during driving. At the same time, as control delay is the only service 

measure that determines the level of service of a signalized intersection, it is convenient to 

transfer control delay to total travel delay to determine the overall PD of a complex two-lane 

highway facility. PD was previously incorporated into CORSIM as an output for two-lane 

highway links as part of the previous CMS project (Washburn and Li, 2010). 

 

In the current HCM (TRB, 2010) two-lane highway methodology, two-lane highways are 

categorized into three classes based on different driver’s expectation during driving. Class I two-

lane highways usually serve to connect major traffic generators (e.g., cities, states), on which 

drivers expect to travel at high speeds and with more comfort. Thus, both ATS and PTSF are 

included in the Class I LOS criteria. Only PTSF is used in determining the LOS of Class II two-

lane highways (e.g., shorter intra-city routes), on which high speed is not of great importance to 

drivers. Class III two-lane highways is a new class in the HCM methodology. Two-lane 

highways traversing developed areas, or along scenic areas, are classified as Class III highways. 

Given that the speed limit typically reduces due to the relatively higher activity level within 

developed areas, the percent of free-flow speed is more meaningful than the absolute average 

travel speed in the determination of LOS. Therefore, PFFS serves as the service measure for 

Class III two-lane highways. 

 

Follower density has been identified as an effective service measure for the evaluations of two-

lane highway operations in previous studies: 1) follower density reflects the effects of flow rate, 
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speed and percentage of followers (Van as, 2006); 2) follower density reflects that flow rate is 

the major factor that affects the performance of highways (Al-Kaisy & Durbin, 2008); and 3) 

follower density has a wide range of variation (Oregon Department of Transportation, 2010). 

Hence, follower density certainly has appeal for being the primary service measure for 

uninterrupted two-lane highways, and even as a secondary service measure for the evaluation of 

two-lane highways with occasional signalized intersections. CORSIM is now able to produce 

follower density as an output for two-lane highway links. 

 

All the service measures discussed above were tested with the same two-lane highway facility in 

section 4.2.1 (the one with a left-turn bay). Only passenger cars were included in the tests, as 

well as all three signal timing plans (Table 3-4). In order to capture the performance of the 

facility over the entire range of flow rates, the capacity on the testing facility in the situation with 

each signal timing plan was estimated. It was found that the capacity ranges from 1408 veh/h to 

1478 veh/h in the three different situations. Therefore, two flow rate levels of 1200 veh/h and 

1400 veh/h were added to the existing flow rate options. Ten iterations of each experiment were 

run, and the average simulation results of the ten iterations were obtained and analyzed. As the 

volume split is 50/50 in all the experiments, only the eastbound results are presented. As the 

service measure results only vary slightly among the three signal timing plans, given that all the 

other inputs remain the same, only the results from the scenarios with the first signal timing plan 

are presented here. Generally, it is expected that the relationship between a service measure and 

flow rate is close to a linear relationship and has a wide spectrum over the range of flow rate. A 

dashed straight line starting from the origin is added in each figure to help evaluate the 

nonlinearity of each relationship. 

 

1. ATS vs. flow rate 

Figure 3-7 illustrates the relationship between directional ATS and directional volume. 

The results show a similar trend to the one from the basic two-lane highway test results (see 

Washburn and Li, 2010, for these results). The difference in the results between the signal timing 

plans is slight, until the flow rate gets close to the capacity. Signal timing plan III, which has the 

smallest maximum green time for the mainline, results in the lowest ATS at the highest flow rate. 

 

Although a strong inverse relationship exists between ATS and flow rate, ATS cannot reflect a 

driver’s perception of the performance of a signalized intersection, which is evaluated based on 

control delay (TRB, 2010). In addition, as speed limit reduction is usually applied in the vicinity 

of a signalized intersection, the absolute value of ATS has little meaning in evaluating such 

facilities. Therefore, ATS is not appropriate for assessing the performance of a two-lane highway 

facility with signalized intersections. 
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Figure 3-7. Directional speed-flow results 

 

2. PTSF vs. flow rate 

Figure 3-8 illustrates the relationship between directional PTSF and directional volume. 

The results are similar in trend to those from the basic two-lane highway test results (see 

Washburn and Li, 2010, for these results). The difference in the results between the signal timing 

plans is not significant. Nevertheless, due to the limited passing opportunities in the proximity of 

a signalized intersection, this passing related service measure is not necessary for a driver’s 

expectation of travel in the intersection influence area. Thus, PTSF does not suit the performance 

evaluation of a two-lane highway facility with signalized intersections. 
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Figure 3-8. Directional PTSF-flow results 

 

3. PD vs. flow rate 

Figure 3-9 illustrates the relationship between directional PD and directional volume. 

Similar to the ATS results, the difference in the PD results between the signal timing plans is 

slight until the flow rate approaches the capacity. Signal timing plan III, which has the smallest 

maximum green time for the mainline, leads to the greatest PD at the highest flow rate. As PD 

considers delays experienced both on basic two-lane highway segments and in the influence area 

of an intersection, it is appropriate for the analysis of complex two-lane highways. 
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Figure 3-9. Directional PD-flow results 

 

The PD grows slowly in the moderate to high flow rate range, which is consistent with the 

variation of the ATS results. However, a PD value greater than 18.3 (the peak PD value in Figure 

3-9) for a two-lane highway facility including signalized intersections does not necessarily mean 

LOS F. Given the same length of two-lane highway, increasing the intersection density will 

increase the total travel delay, which as a result increases the PD result. For consistency with 

other LOS methodologies in the HCM, LOS F is not considered to be applicable until the 

demand exceeds the capacity. 

 

4. Follower density vs. flow rate 

Figure 4-10 illustrates the relationship between directional follower density and 

directional volume. The results with different signal timing plans have little difference. As 

mentioned before, follower density reflects the effects of flow rate, speed and percentage of 

followers. However, follower density might be more useful for uninterrupted two-lane highway 

facilities in that it does not describe very well the performance of a signalized intersection from a 

driver’s perspective, and it is not appropriate to be applied to a two-lane highway facility on 

which speed limit reduces in some areas. 
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Figure 3-10. Directional follower density-flow results 

 

The relationship between follower density and flow rate is closest to a linear relationship 

according to Figure 3-10. This also confirms the good eligibility of follower density as a service 

measure for uninterrupted two-lane highways. Further study is desired on this service measure, 

including field data collection, simulation calibration, and the determination of LOS criteria. 

 

5. PFFS vs. flow rate 

Figure 3-11 illustrates the relationship between directional PFFS and directional volume. 

The PFFS-flow curve shares the similar trend with the ATS-flow curve (Figure 3-7) because the 

free-flow speed in the current tests remains the same along the mainline. PFFS is the service 

measure for Class III two-lane highways in the HCM 2010. Although Class III highways 

represent two-lane highways traversing developed areas, they are still considered uninterrupted 

highway facilities from the HCM perspective and different from two-lane highway facilities that 

include signalized intersections. It is possible to extend PFFS’s application into the analysis of a 

two-lane highway facility with a signalized intersection, as the delay incurred in the intersection 

influence area can be translated into the overall average travel speed, based on which the overall 

PFFS can be determined. If the posted speed limit varies along a two-lane highway facility with 

intersections, it is more appropriate to consider the weighted average PFFS based on different 

speed limits over the entire facility in that case. Therefore, extra calculation steps might be 

involved in an analysis procedure using PFFS as a service measure, which might make it 

somewhat more cumbersome to use than PD. 
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Figure 3-11. Directional PFFS-flow results 

 

In summary, PD is the most appropriate service measure among the five candidate measures 

presented here for a two-lane highway facility with signalized intersections. Meanwhile, it has 

been confirmed that follower density can serve as an effective service measure for the 

assessment of uninterrupted two-lane highway operations. 

 

3.6 Overall Evaluation Methodology 

 

The evaluation methodology uses the same idea as used in the Yu and Washburn study (2009), 

as mentioned in section 4.1. The detailed evaluation procedure is described below, followed by 

the validation of the methodology. 

 

3.6.1 Evaluation methodology 

 

The vehicle trajectory approach for determining upstream and downstream effective length is in 

fact consistent with the definition of control delay (Figure 3-12). Therefore, the delay 

experienced within upstream and downstream effective segments can be fully accounted for by 

control delay. In this sense, it is rational to divide a two-lane highway facility with signalized 

intersections into basic two-lane highway segments and intersection influence areas. 
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A 

Figure 3-12. Trajectory of delayed vehicle on time-space plane. A) Delayed vehicle with a 

complete stop at intersection B) Delayed vehicle without a complete stop at 

intersection C) Delayed vehicle with a complete stop at intersection and a relatively 

long upstream/downstream effective length 
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Figure 3-12. Continued 
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The procedure for evaluating the traffic operations on a two-lane highway with a signalized 

intersection can be divided into seven steps, as follows: 

 

Step 1. Determine the upstream and downstream effective length of the signalized 

intersection for obtaining the intersection influence area. 

Step 2. Segment the facility according to the location of the intersection influence area. 

The areas other than the intersection influence area are treated as basic two-lane 

highway segments. 

Step 3. Determine the delay on each basic two-lane highway segment by calculating the 

difference between actual travel time and free-flow travel time. 

Step 4. Determine the control delay of the intersection. 

Step 5. Sum up the delays calculated in Step 3 and Step 4. 

Step 6. Determine the free-flow travel time along the entire facility. 

Step 7. Determine the Percent Delay and the corresponding level of service. 

 

The HCM 2010 analysis procedures are recommended to accomplish Step 3 and Step 4. 

 

3.6.2 Validation of the methodology 

 

To validate the efficacy of this methodology, a two-lane highway facility in combination with 

two signalized intersections was employed (Figure 3-13) in the tests with three different flow 

rate levels. The validation analysis procedure is given in the steps below. 

 

Step 1. Given a facility, determine the upstream effective length and downstream effective 

length, and then divide the facility into appropriate segments. 

Step 2. Establish a testing facility in CORSIM based on the segments obtained in Step 1. 

Step 3. Run the simulation test to generate the overall Percent Delay (PD) for the entire 

facility, and the control delay for each signalized intersection. 

Step 4. Establish a basic two-lane highway facility in CORSIM, with the same inputs as 

the one in Step 2, except for the signalized intersections. 

Step 5. Run the simulation test to obtain ATS on the basic two-lane highway facility set up 

in Step 4. 

Step 6. Use the control delays obtained from Step 3 and the ATS on the basic two-lane 

facility from Step 5 to calculate the overall PD. 

Step 7. Compare the calculated PD with the aggregate PD produced by CORSIM. 
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3 miles 7 miles 4 miles

 
Figure 3-13. Illustration of a two-lane highway facility with two signalized intersections 

 

From the comparison results in Table 3-8, it can be seen that the calculated PD is lower than the 

aggregate PD in every flow rate level. This difference was caused by the underestimation of 

control delay in CORSIM. In CORSIM, only the link immediately upstream of the signal has a 

nonzero value of control delay; thus, the link immediately downstream of the signal always has a 

control delay of zero. Control delay includes initial deceleration delay, queue move-up time, 

stopped delay and the final acceleration delay (TRB, 2010). Therefore, control delay also occurs 

on the link immediately downstream of signal. If the control delay calculated in CORSIM is 

adjusted to an appropriate value to account for the downstream delay, the aggregate PD gets very 

close to the calculated PD. 

 

The comparison was also made between the aggregate PD from CORSIM output and the 

calculated PD based upon the HCM calculations for ATS and control delay. The difference in the 

results is caused primarily by the underestimation of the average travel speed on two-lane 

highways in the HCM 2010 (Figure 3-14
5
). If the average travel speed on a basic two-lane 

highway segment calculated by the HCM 2010 is adjusted to an appropriate value, the aggregate 

PD becomes very close to the calculated PD. 

 

Table 3-8. Comparison results for validation 

 Percent delay (%) 

Directional flow rate  

(pc/h) 

CORSIM 

output 

*Calculated result 

(CORSIM) 

**Calculated result 

(HCM) 

200 5.20 4.56 10.00 

600 11.74 10.79 22.10 

1000 15.89 14.15 41.10 

 

                                                 
5
The HCM ATS results in Figure 3-14 were calculated by Equation 15-6 in the HCM (TRB, 2010) (refer to Equation 

2-1 in this document). 
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Figure 3-14. Comparison of CORSIM ATS and HCM ATS 

 

3.6.3 Percent-delay-based LOS criteria 

 

The valid thresholds for the PD-based LOS criteria should satisfy two requirements: 1) for an 

analysis of a two-lane highway facility without signals, analysts should obtain the same LOS if 

switching from the HCM service measures to PD; 2) for an analysis of a two-lane highway 

facility with a signal, analysts will not obtain a better LOS compared with a no-signal situation. 

To determine the thresholds for the PD-based LOS criteria, the analytical methodology described 

in section 4.6.1 was used to carry out two sets of calculations. One set of calculations is based on 

an 8-mi basic two-lane highway facility, and the other set of calculations is based on an 8-mi 

two-lane highway facility with a signalized intersection at the 4-mi point. The percent delay was 

calculated at seven different flow rate levels on both testing facilities. 

 

As in the current HCM two-lane highway methodology (TRB, 2010), three different LOS criteria 

are used for three different two-lane highway classes, and all three LOS criteria were employed 

as references to determine the PD thresholds. The procedure for determining the PD thresholds 

is summarized as follows: 

 

Step 1. Develop the relationships between flow rate and the HCM service measures (i.e., 

ATS, PTSF, and PFFS) for the two-lane highway facility without signals based on 

the HCM methodology. 

Step 2. Determine the corresponding flow rates at the LOS boundary values for each 

service measure. 
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Step 3. Develop the relationship between flow rate and PD for the two-lane highway 

facility without signals. 

Step 4. Determine the boundary values for each PD-based level of service based on the 

flow rate thresholds obtained from Step 2. 

 

Figures 3-15 to 3-18 illustrate the thresholds for the PD-based LOS criteria based on the HCM 

two-lane highway LOS criteria. The relationship between flow rate and PD for the two-lane 

highway facility without a signal is also plotted in each figure to confirm that inserting a signal 

on to a two-lane highway will not result in a better LOS. 

 

 

Figure 3-15. PD LOS criteria based on PTSF LOS criteria for Class I two-lane highways 
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Figure 3-16. PD LOS criteria based on ATS LOS criteria for Class I two-lane highways 
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Figure 3-17. PD LOS criteria based on PTSF LOS criteria for Class II two-lane highways 
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Figure 3-18. PD LOS criteria based on PFFS LOS criteria for Class III two-lane highways 

 

As the sets of PD thresholds obtained based on the HCM LOS criteria, which are different for 

each two-lane highway class, were found to be different from each other, the PD-based LOS 

criteria are determined separately for each two-lane highway class. It should be noted that both 

PTSF and ATS are employed as the service measure for a Class I two-lane highway. Therefore, 

two sets of PD thresholds based on the Class I PTSF criteria and the Class I ATS criteria were 

combined to determine one set of PD thresholds. The details of the PD-based LOS criteria are 

listed in Table 3-9. 

 

Table 3-9. LOS criteria for two-lane highway facilities based on PD 

Level of 

service 

PD (%) 

Class I Highways Class II Highways Class III Highways 

A ≤ 9 ≤ 12 ≤ 9.5 

B > 9–14 > 12–16 > 9.5–21.5 

C > 14–20.5 > 16–23 > 21.5–36.5 

D > 20.5–30 > 23–36.5 > 36.5–55.5 

E > 30 > 36.5 > 55.5 
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3.7 Additional Guidance for Facility Segmentation 

 

It is common in the field that the posted speed limit will be reduced in the vicinity of a signalized 

intersection on a two-lane highway. Considering the impracticality of speed limit reduction 

design as an input in a model, the guidance for facility segmentation regarding this factor is 

discussed in this section. 

 

3.7.1 Segmentation Guidance 

 

When speed limit reduction design is applied in the upstream segment of an intersection, two 

different situations may exist: 

 

 Vehicles have to decelerate due to a speed limit reduction prior to entering the influence 

area of a signalized intersection 

 Vehicles enter the influence area of a signalized intersection, and are regulated by a speed 

limit sign indicating the reduced limit. 

 

The CORSIM modeling logic dictates that vehicles usually start to decelerate at 4 ft/s
2
 to adjust 

their speeds under the reduced speed limit requirement. Therefore, using VTAPE for determining 

the upstream effective length for each vehicle mentioned in section 4.3.1, it is difficult to 

distinguish the vehicles decelerating due to speed limit reduction from the vehicles decelerating 

due to the signal. However, it is still believed that the delay experienced in the influence area of a 

signalized intersection (combination of upstream effective segment and downstream effective 

segment) should only come from the control delay. 

 

Based on this understanding, given a two-lane highway facility with a speed limit reduction 

upstream of the signal, the facility segmentation is performed as follows: 

 

Step 1. Calculate the upstream effective length based on given conditions. 

Step 2. Locate the position where the speed limit drops. 

Step 3. Check if the position of the speed limit change is further upstream from the 

intersection than the position where the calculated upstream effective segment 

begins. If so, divide the unaffected segment into two basic two-lane highway 

segments with different free-flow speeds (Figure 3-19A). Otherwise, the 

overlapped part will be considered as a part of the upstream effective segment 

without special treatment (Figure 3-19B). 

 

 



 

 

 

 

 

CMS Final Report  42 

Intersection

Upstream effective lengthSpeed limit drops

Upstream effective segment
Basic 

segment
Basic segment

 

A 

 

Intersection

Upstream effective length

Speed limit drops
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Overlapped 

segment
Basic segment

 

B

 

Figure 3-19. Illustration of facility segmentation. A) Speed limit drops before the starting point 

of upstream effective length B) Speed limit drops after the starting point of upstream effective 

length 

 

3.7.2 Example 

 

An example is presented for illustrating the evaluation procedure when speed limit reduction 

design is applied upstream of a signal. 

 

The input data for a two-lane highway facility that includes a signalized intersection has the 

following characteristics: 

 

 Directional flow rate = 800 pc/h (in both directions) 

 PHF = 1.00 

 5% left-turns 

 100% passing zones in both directions (except for the vicinity of the intersection) 

 Level terrain 

 0% heavy vehicles 

 12-ft lane widths 

 6-ft shoulders 

 0 access points/mi (on basic two-lane highway segments) 

 60 mi/h base free-flow speed on most of the facility , 50 mi/h free-flow speed on the 800-

ft link immediately upstream of signal in the analysis direction 
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 8-mi segment length, the intersection is located in the middle 

 Left-turn bay is provided 

 Average cycle length (during 15-min analysis period) = 57.3 s 

 Effective green time for major road (during 15-min analysis period) = 33.8 s 

 

Step 1. Determine upstream effective length. Upstream effective length is estimated using 

Equation 3-2. Then: 

CyclegCLT
v

Cycle
v

Len

d

d
upeff



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

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_
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8.33102.145
100

800
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2
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
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
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










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Step 2. Locate the position where the speed limit drops. Based on the inputs, the speed 

limit drops 800 ft in advance of the signalized intersection. 

Step 3. Check if the speed limit drops prior to where the upstream effective segment 

begins. Because 800 ft is greater than 440.3 ft, the speed limit drops prior to where 

the upstream effective segment begins. 

Step 4. Subdivide upstream segment. The 4-mi upstream segment is divided into 3 

segments with different features. The length of each segment is determined as 

follows: 

Leff_up: upstream effective segment 

(mi) 083.0)ft( 3.440_ upeffLen
 

Lup_2: basic two-lane segment with free-flow speed of 50 mi/h 

(mi) 0.068(ft) 6.3593.4408002_ upLen
 

Lup_1: basic two-lane segment with free-flow speed of 60 mi/h 

(mi) 848.3(ft) 20320800528041_ upLen  

Step 5. Determine downstream effective length. Downstream effective length is estimated 

using Equation 3-4, as follows: 
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gLT
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Step 6. Subdivide downstream segment. The 4-mi downstream segment is divided into 2 

segments with different features. The length of each segment is determined as 

follows: 

 

Leff_down: downstream effective segment 

(mi) 240.0)ft( 6.1267_ downeffLen
 

Ldown_1: basic two-lane segment with free-flow speed of 50 mi/h 

(mi) 760.3(ft) 4.198526.1267528041_ downLen
 

Step 7. Estimate ATS on basic two-lane segment. The average travel speed on each basic 

two-lane segment is estimated with the procedure in Chapter 15 of the HCM 2010 

(TRB, 2010). 

 

The basic two-lane highway segments with free-flow speed of 60 mi/h: 

(mi/h) 0.4760_ basicATS  

The basic two-lane highway segments with free-flow speed of 50 mi/h: 

(mi/h) 2.3750_ basicATS  

Step 8. Estimate control delay. The control delay for the analysis approach is estimated 

with the procedure in Chapter 18 of the HCM 2010 (TRB, 2010). 

(s) 5.13controlDelay  
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Step 9. Determine the delay on each segment and total delay along the facility. The basic 

two-lane highway segment Lup_1: 

(s) 72.63(h) 0177.0
0.60

848.3

0.47

848.3

1_

1_

60_

1_

1_ 
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up
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up

up
FFS

L

ATS

L
Delay  

The basic two-lane highway segment Lup_2: 

(s) 8.1(h) 0005.0
0.50

068.0

2.37

068.0

2_

2_

50_

2_

2_ 
up

up

basic

up

up
FFS

L

ATS

L
Delay  

The influence area of the signalized intersection is the combination of the upstream 

effective segment and downstream effective segment. The delay occurring in this 

area is accounted for by the control delay in Step 6. 

(s) 5.13 controlonintersecti DelayDelay  

The basic two-lane highway segment Ldown_1: 

(s) 28.62(h) 0173.0
0.60

760.3

0.47

760.3

1_

1_

60_

1_

1_ 
down

down
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down

down
FFS

L

ATS

L
Delay  

Therefore, the total delay can be calculated as: 

(s) 3.1411_2_1_  downonintersectiupuptotal DelayDelayDelayDelayDelay  

Step 10. Determine PD and the level of service (LOS) 

%32.29
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FFS

L
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L
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PD  

As the facility in this example is close to a Class III two-lane highway, the LOS can be 

determined by comparing the PD value with the PD criteria for Class III highways in Table 3-9. 

By applying the criteria, it is indicated that the analysis direction operates at LOS C. 

 

3.8 Comparison of the New Models to the Previous Models 

 

As the research approach used in the current study is different from the one used in the Yu and 

Washburn study (2009), the differences between the current analytical methodology and the 

previous one are understandable from the following aspects. 

 

1. Simulation tool 

The current methodology was developed based on the new version of CORSIM with the 

modeling capability of two-lane highways incorporated. Thus, a two-lane highway facility with 

various features (e.g., passing lane, signalized intersection, etc.) can be modeled in CORSIM as a 
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whole. However, as such modeling capability was not available before, the previous 

methodology was developed by a hybrid simulation approach. In the Yu and Washburn study 

(2009), CORSIM was employed to model a two-lane, two-way road upstream of a signal, while 

TWOPAS was used to model a downstream two-lane highway segment. Although the TWOPAS 

input parameter EPF can be used to represent the effects of a signalized intersection, the traffic 

flow simulated in TWOPAS was not related to the traffic flow simulated in CORSIM. Thus, 

some inconsistencies may have not been accounted for. Moreover, the passing models employed 

in the new CORSIM are different from the ones applied in TWOPAS, which is also a possible 

source of the differences. 

 

2. Experimental design. 

The most different component in the current experimental design from the previous one 

is signal timing. As it is desired to keep major flows unimpeded as much as possible, three fully-

actuated signal timing plans were used in the current experiments, as opposed to pretimed 

control used in the previous experiments. Fully-actuated signal control is more responsive and 

efficient than pretimed signal control. But at the same time, different signal control types will 

definitely result in different simulation data, which becomes a source of the differences. 

 

Another source of differences can be the facility design used to determine the downstream 

effective length in the previous study. The average travel speed at each data collection station on 

a two-lane highway segment representing the situation without a signal was compared with the 

one on a two-lane highway segment representing the segment downstream of the signal. 

However, as no lead-up segment (for obtaining normal platoons on the analysis two-lane 

highway segment) was included in simulating the two-lane highway segment without a signal, 

the average travel speed was close to the free-flow speed at the beginning and leveled off after 

some distance. This issue may result in the overestimation of the downstream effective length. 

 

The differences may also come from the different centerline markings on the upstream link. The 

current experiments used a 4-mi long upstream segment with passing-allowed all the way except 

in the vicinity of the signal. However, the previous study used a 1-mi long upstream segment 

with no-passing-allowed all the way down to the signal (because CORSIM did not have the 

ability to model passing maneuvers in the oncoming lane at that time). Although it was indicated 

that passing maneuvers rarely happen when vehicles approach an intersection, that distance is 

usually less than 2000 ft if passing is allowed. The length of the passing zone has impacts on the 

pattern of platoons, which can lead to significant differences between the two methodologies. 

 

3. Algorithms for determining upstream and downstream effective length 

The previous methodology takes the combination of upstream effective length and 

acceleration distance as the influence area of a signal. The downstream effective length begins 

after the acceleration distance. Speed variation (based on 132-ft link average speed in CORSIM 

and 100-ft link average speed in TWOPAS) is the criterion for determining the beginning of the 

upstream effective length and the end of the downstream effective length. 
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In the current methodology, since vehicle trajectory data was used for the model development, 

the criteria for determining upstream and downstream effective length mainly focused on each 

individual vehicle’s operation, and are more accurate. Because the algorithms are consistent with 

the concept of control delay, the combination of upstream effective length and downstream 

effective length is considered as the influence area of a signal. The delay occurring within the 

influence area of a signal can then be fully represented by control delay. 
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CHAPTER 4 COMPARISON OF THE CORSIM AND HCM 2010 TWO-

LANE HIGHWAY TRAFFIC FLOW RELATIONSHIPS 
 

With the recently enhanced version of CORSIM, that is, incorporating the ability to model two-

lane highway operations, a natural question arises as to how the performance measures estimated 

from CORSIM compare to those estimated by the HCM 2010 two-lane highway analysis 

methodology. This chapter provides an extensive comparison of Percent Time-Spent-Following 

(PTSF) and Average Travel Speed (ATS), the two primary performance measures used in the 

HCM analysis methodology, as estimated from the HCM and CORSIM, including the speed-

flow relationship and the PTSF-flow relationship. Guidance is provided for setting up 

corresponding networks between CORSIM and the HCM. 

 

4.1 Experimental Design for CORSIM and 2010 HCM Comparison 

 

In order to compare the results between the 2010 HCM and CORSIM, it is important to have a 

comparable set of inputs. Table 4-1 shows an example of common inputs for the HCM and 

CORSIM and also shows which inputs are not applicable for each method. The inputs in Table 

4-1 must have the same values where applicable in CORSIM and the HCM in order to ensure 

that the conditions are as similar as possible for each of the corresponding HCM and CORSIM 

testing scenarios. 

 

There are several factors that are inputs in CORSIM, but not in the HCM, that could cause 

majors differences in the results. These factors include existing upstream conditions, truck type 

distribution, and passing zone configuration. A facility with a changing grade configuration 

could also have major effects on the results as the HCM does not have an input for specifying 

where the grade changes. However, all testing scenarios in this chapter have a constant grade 

along the entire facility, which eliminates uncertainties with changing grades. Several 

preliminary tests were run to see which CORSIM inputs for these factors should be used to give 

similar results to the HCM. These testing procedures are described in the next section. 

 

4.1.1 Preliminary experiments 

 

There are several inputs required for the HCM that are not applicable in CORSIM and 

conversely as shown in Table 4-1. The inputs that are not applicable in CORSIM are 

programmed internally in the algorithms. There are certain factors that have an impact on 

CORSIM results that are not mentioned in the HCM such as existing conditions upstream of the 

facility, truck type distribution, and passing zone configurations. Before any major comparison 

between CORSIM and the HCM was made, preliminary tests for existing conditions upstream of 

the facility, truck type distribution, and passing lane configuration were performed. Also, a 

preliminary test was done that compared the speed vs. flow rate relationship and PTSF vs. flow 

rate between CORSIM and the HCM. The results of these tests were used as guidance for 

matching the CORSIM inputs as closely as possible to the HCM inputs. 

 



 

 

 

 

 

CMS Final Report  49 

Table 4-1. Example inputs for HCM and CORSIM 

Inputs HCM CORSIM 

Geometric data   

facility length (mi) 10 10 

lane width (ft) 12 N/A 

shoulder width (ft) 6 N/A 

access point density (points/mi) 0 N/A 

grade (%) 0 0 

radius of curvature (ft) N/A 0 

superelevation (%) N/A 0 

percentage of no-passing zones (%) 0 N/A 

passing lane length (ft) (if applicable) 5280 5280 

highway class 1 N/A 

Demand data   

length of analysis period (h) 1 1 

PHF 1 N/A 

base FFS (mi/h) 60 N/A 

FFS (mi/h) 65 65 

heavy vehicle percentage (%) 0 0 

directional split 50/50 N/A 

two-way flow rate (veh/h) 1200 N/A 

eastbound flow rate (veh/h) N/A 600 

westbound flow rate (veh/h) N/A 600 

Adapted from Transportation Research Board (TRB). Highway Capacity Manual. TRB, National 

Research Council, Washington D.C. 2010. 

 

Three main preliminary tests were done in CORSIM for guidance on how to properly compare 

the 2010 HCM with CORSIM. The CORSIM values that best reflected what the HCM most 

likely assumes were chosen as the inputs for the main CORSIM and HCM comparison after 

analyzing the results of these preliminary tests. 

 

1. Existing Upstream Conditions 

When analyzing a facility in the HCM, there are preexisting conditions upstream of the 

facility such as platoon structure on some unknown length of roadway. The HCM was based on 

TWOPAS simulation where one of the inputs was percentage of traffic flow entering as platoons. 

This established the incoming traffic conditions for the analysis facility. In CORSIM, vehicles 

are generated from an entry node and no upstream conditions have been established. This has a 

large impact on the entering platoon structure, especially for short facilities with low traffic 

volumes because the vehicles are spaced out when they are generated and can possibly move 

through the entire facility before coming near other vehicles. This could lead to an unrealistically 

low PTSF. In order to have accurate results, there needs to be a lead up length to the facility that 

allows platoons to form and incites vehicles to interact prior to the section of roadway for which 

data will be collected. There should also be a follow up length that is identical in distance to the 
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lead up length in an effort to have similar traffic conditions coming from both the eastbound and 

westbound directions. The results of the analysis for any facility should then only be extracted 

from the links that make up the analysis facility and not from the lead up or follow up segments. 

Three different facility lengths were tested with varying lead up lengths in order to determine 

what the lead up length should be and how the performance measures were affected. The 

facilities have lengths of three, five, and ten miles. Each facility was tested with different lead up 

lengths ranging from one to six miles. The three facilities were tested with passing allowed and 

passing not allowed. Based on the analysis of the test results, a lead up length of five miles was 

chosen because it led to a small difference in the PTSF results for both passing allowed and 

passing not allowed. This allowed the five-mile lead up segment to be used for all passing zone 

scenarios. Five miles was also chosen as the follow up segment length in order to maintain 

symmetry in the facility. 

 

2. Truck Type Distribution 

The HCM has an input for the percentage of trucks, but does not allow the analyst to 

specify what types of trucks make up that percentage. CORSIM has an input for the percentage 

of trucks and also allows the analyst to specify which types of trucks make up that percentage. 

The truck types range from 3 to 6. Type 3 indicates single unit trucks that are 35 ft long. Type 4 

trucks have a medium-sized load and are 53 ft in length. Type 5 trucks are fully-loaded with a 

length of 53 ft, and type 6 trucks are 64 ft long double-bottom trailers (Table 3-1). 

 

Trucks in the traffic stream have a large impact on ATS. Seven different truck type splits were 

tested and each scenario that had some percentage of type 6 trucks had results that were 

considerably different from the scenarios with no type 6 trucks. All seven tests either 

underestimated or overestimated the HCM results for speed. The HCM shows a linear 

relationship between speed and flow while the CORSIM truck type tests all showed a curve 

shape that initially has a fairly steep negative slope for low flow rates and then the curve slope 

decreases to the point where it is fairly flat over the moderate to high flow rates, which supports 

Luttinen’s (2000) and Brilon and Weiser’s (2006) findings about the speed-flow relationship on 

two-lane highways. Ultimately, the truck percentage split of 50/25/25 for Type 3, 4 and 5 trucks 

was chosen to be used for the major comparison of the HCM and CORSIM because it has the 

most realistic distribution of truck types and matched better than the other tests. 

 

3. Passing zone configuration 

The HCM allows the user to specify that the facility has some percentage of no-passing 

zones. However, CORSIM specifies passing zones on a link by link basis. In CORSIM, the user 

can select exactly where the no-passing zones are located. The HCM does not allow the user to 

select where the no-passing zones are along the facility. Therefore, even when both methods 

have the same percentage of no-passing zones, the configuration is ambiguous. This problem 

could potentially lead to differences in the performance measure results. 

 

Since the results for PTSF and ATS were similar between all three testing facilities (Table 4-2), 

facility A was chosen as the 50% no-passing zone configuration for the major HCM and 

CORSIM comparison. Facility A was chosen because it is the simplest of the three facilities with 
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the first five miles being specified as a no-passing zone and the last five miles being specified as 

a passing zone. Any of the facilities would have been adequate for the major comparison since 

the passing zone configuration does not have an impact on the average of the performance 

measure results. 

 

Table 4-2. Scenarios for CORSIM no-passing zone configuration test 

Facility A Facility B Facility C 

Link length 

(mi) 

Passing 

allowed 

Link length 

(mi) 

Passing 

allowed 

Link length 

(mi) 

Passing 

allowed 

5 N 2.5 N 1 N 

5 Y 2.5 Y 1 Y 

  

2.5 N 1 N 

  

2.5 Y 1 Y 

    

1 N 

    

1 Y 

    

1 N 

    

1 Y 

    

1 N 

    

1 Y 

 

4.1.2 CORSIM/HCM experimental design 

 

The procedure that was chosen for comparing the 2010 HCM to CORSIM was to use the same 

inputs for both tools, to the extent possible, and compare the outputs. A wide range of inputs was 

used to analyze how these two methods compared to each other for a variety of situations. A 

variety of combinations was used to see if there was a certain scenario that showed drastically 

different results from the other scenarios. This experiment involves variations of the directional 

volumes, heavy vehicle percentages, grades, no-passing zone percentages, and the presence or 

absence of a passing lane. The input values that were selected for the comparison are described 

as following. 

 

1. Flow rates and splits 

Six different two-way flow rates were used in this experiment in order to capture possible 

differences with low, medium, and high volumes. The values used were 200, 700, 1200, 1700, 

2200, and 3200 veh/h. These six volumes were each analyzed under three different splits, 50/50, 

60/40, and 70/30. The base conditions were 0% heavy vehicles, 0% no-passing zones, and 0% 

grade. 

 

2. Percent heavy vehicles 

Two different percentages of heavy vehicles were used in this experiment in order to 

analyze the changes in performance measures due to heavy vehicles and to analyze the effects of 

heavy vehicles on attempted passes. The heavy vehicle percentages that were used were 0% and 

10%. These values were chosen because the performance measures are expected to show a 
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noticeable change for an increase from no trucks to 10% trucks in the traffic stream. All heavy 

vehicles are assumed to be trucks and not recreational vehicles. The base conditions were 

modified to incorporate the increased truck percentage in the traffic stream. The truck type 

distribution is based on the results of the preliminary truck type distribution test. 

 

3. Grades 

Two different grades were used in this experiment because upgrades can have a large 

impact on truck speeds and this variation in grade is expected to have a large effect on the 

number of platoons, attempted passes, and following vehicles. The values that were chosen for 

grade were 0% and 6%. The slope of 6% was added as a test variable by building on the previous 

cases, which included the base conditions and the cases that incorporated the percentage of 

heavy vehicles. 

 

4. Percent no-passing zones 

The percentage of no-passing zones is another variable that affects two-lane highway 

performance measures. The 2010 HCM and CORSIM have different methods for inputting the 

percentage of no-passing zones. The differences between these two tools make it impossible to 

ensure that the two-lane highway analyzed in the 2010 HCM is the same as the two-lane 

highway created in CORSIM. 

 

In the 2010 HCM, the percentage of no-passing zones is accounted for in the percent no-passing 

zone adjustment factor, fnp, which is different for ATS and PTSF calculations. However, the 2010 

HCM does not specify which section of the highway is a no-passing zone. It only specifies that, 

somewhere along the highway, a certain percentage is a no-passing zone. 

 

CORSIM does not include a direct input for the percentage of no-passing zones. Instead, the user 

specifies what the center-line striping condition is for each link (passing allowed in one-

direction, passing allowed in both directions, or passing not allowed in either direction). For 

example, to specify a 50% no-passing zone on a ten-mile long highway segment with ten one-

mile links, the user could select no passing allowed on the first five links and passing allowed on 

the last five links. The user could choose any five links to allow no passing and it would still be a 

50% no-passing zone. The advantage in CORSIM is that the user can chose the passing zone 

configuration or where the passing zone section is located along the highway. The preliminary 

test for passing configuration was also used to compare the two tools’ sensitivity to this factor. 

 

The other passing zone scenarios that were tested in this experiment, besides 0%, were 50% and 

100% no-passing zones. These changes were made in the existing files of the previously-tested 

cases, which all consisted of 0% no-passing zones. In CORSIM, the segments that were changed 

from 0% no-passing zones were the ones closest to the eastbound entry node. For example, the 

50% no-passing zone case would have five miles of no-passing allowed closest to the eastbound 

entry node and would continue with five miles of passing allowed. Links with passing allowed in 

one direction were not tested in this study. 
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5. Passing lanes 

This experiment also tested the effects of passing lanes on two-lane highway performance 

measures. All the scenarios described previously had no passing lanes. Changes were made to 

those scenarios to incorporate a passing lane with a length of 5280 feet. 

There are 432 different trials based on all of the different combinations of four volumes, three 

directional splits, three percentages of heavy vehicles, three percentages of no-passing zones, 

two grades, and two passing lane length scenarios. Table 4-3 shows a summary of all the variable 

combinations being used for this study. 

 

Table 4-3. Variables used in HCM and CORSIM testing 

Flow rates (veh/h) Splits % HV % NPZ % Grade Passing lane length (ft) 

200 50/50 0 0 0 0 

700 60/40 10 50 6 5280 

1200 70/30 - 100 - - 

1700 - - - - - 

2200 - - - - - 

3200 - - - - - 

 

The 2010 HCM methodology was programmed into a numerical calculations worksheet and 

every scenario was analyzed. The numerical calculations worksheet allowed quick and easy 

changes to be made to the inputs for each testing scenario. 

 

4.1.3 CORSIM testing facility 

 

The CORSIM two-lane highway testing facility used in this experiment is ten miles long. The 

peak hour demand volume for the analysis direction is generated from node 8100 and travels 

eastbound. The opposing demand volume is generated from node 8200 and travels westbound. 

The passing lane scenarios have one passing lane that is one mile in length. The passing lane 

runs along the eastbound direction of the highway and is the fifth link away from node 8100. 

There are four one-mile upstream links and five one-mile downstream links. Figure 4-1 shows 

the CORSIM two-lane highway schematic. Ten runs were executed in CORSIM for each testing 

scenario and the average PTSF and ATS for the ten runs was recorded. 

 

 

Figure 4-1. Two-lane highway facility in CORSIM with passing lane 
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4.2 CORSIM and 2010 HCM Comparison Results 

 

Each combination of variables described in Table 4-3 was tested in CORSIM and the 2010 

HCM. The PTSF and ATS were plotted against two-way flow rate for the three different splits to 

allow for easy comparison of the HCM and CORSIM. This process was repeated for all three 

passing-zone cases, both grade cases, and both percentages of heavy vehicles for scenarios with 

no passing lane. For the cases with passing lanes, performance measures were plotted against 

facility length for the 60/40 split only. The results of this test are discussed in this section. 

 

4.2.1 0% no-passing zone with 0% grade test results 

 

The 2010 HCM and CORSIM followed the same increasing trend for the PTSF plots for both 0% 

and 10% heavy vehicles as shown in Figure 4-2 and Figure 4-3. When the two-way flow rate 

reached 3200 veh/h, the HCM showed a PTSF estimate of 98.6% for the 70/30 split while 

CORSIM showed a PTSF estimate of 91.1%. It is unrealistic that the PTSF would be nearly 

100% because the traffic stream always breaks up into several platoons due to slow vehicles. 

Figure 4-4 shows the platoon structure for a two-way flow rate of 3200 veh/h under a 70/30 

directional split. Although the directional flow rate is 2240 veh/h, there are still some gaps 

between vehicles. 

 

 
Figure 4-2. PTSF vs. two-way flow rate - 0% grade, 0%NPZ, 0%HV, no passing lane 
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Figure 4-3. PTSF vs. two-way flow rate - 0% grade, 0%NPZ, 10%HV, no passing lane 

 

 

 
Figure 4-4.  Platoon structure for 3200 veh/h flow rate 

 

The ATS plots are consistent with the preliminary speed-flow tests. The HCM has a linear 

decreasing trend and CORSIM has a curve shape that initially has a fairly steep negative slope 

for low flow rates and then the curve slope decreases to the point where it is fairly flat over the 

moderate to high flow rates for both 0% and 10% heavy vehicles. The ATS values are similar 

between 0% and 10% heavy vehicles. The ATS plots are shown in Figure 4-5 and Figure 4-6. 

The plots show that flow rate may not have such a large effect on speed as the HCM shows. 
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Figure 4-5. ATS vs. two-way flow rate - 0% grade, 0%NPZ, 0%HV, no passing lane 

 
Figure 4-6. ATS vs. two-way flow rate - 0% grade, 0%NPZ, 10%HV, no passing lane 

 

4.2.2 0% no-passing zone with 6% grade test results 

 

For 0% heavy vehicles, CORSIM showed higher PTSF results than the HCM for flow rates 

lower than 1700 veh/h. For flow rates higher than 1700 veh/h, the HCM showed higher values 

for PTSF than CORSIM. The trend for PTSF is similar between the two tools. For 10% heavy 

vehicles, the HCM shows the same general trend, but the values for PTSF are higher because 

grade has a large effect on truck speeds and slow-moving trucks cause platoons to form. The 

HCM PTSF value at 3200 veh/h for the 70/30 split is 99.9%, which is unrealistic. The reason 

may be that the HCM equations are not valid for two-lane highways after breakdown. 
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In CORSIM, the PTSF results at 200 veh/h are about 50% higher than the HCM results for a 

50/50 directional split and about 60% higher than the HCM results for the 60/40 and 70/30 

directional splits for 10% heavy vehicles. For flow rates higher than 700 veh/h, the PTSF is 

consistently near 95% for the CORSIM curve while the HCM trend is similar to the 0% heavy 

vehicle case. The values given by CORSIM seem unreasonably high, especially for the lower 

flow rates. The PTSF values are high because long platoons form on the upgrade and the 

vehicles travel at high speeds on the opposing-direction downgrade. Therefore, there are few 

gaps for passing opportunities because the opposing vehicles arrive frequently. The PTSF plots 

are shown in Figure 4-7 and Figure 4-8. 

 

 
Figure 4-7. PTSF vs. two-way flow rate - 6% grade, 0%NPZ, 0%HV, no passing lane 
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Figure 4-8. PTSF vs. two-way flow rate - 6% grade, 0%NPZ, 10%HV, no passing lane 

 

For 0% heavy vehicles, CORSIM and the HCM had the same trends and values for ATS as with 

the 0% grade. For 10% heavy vehicles, the HCM ATS values generally followed a linear 

decreasing path. The directional splits showed slight differences in ATS for values before the 

flow rate of 1700 veh/h. At a flow rate of 3200 veh/h, the speed drops to an unreasonably low 

value of 4.7 mi/h. The ATS plots are shown in Figure 4-9 and Figure 4-10. 

 

 
Figure 4-9. ATS vs. two-way flow rate - 6% grade, 0%NPZ, 0%HV, no passing lane 
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Figure 4-10. ATS vs. two-way flow rate - 6% grade, 0%NPZ, 10%HV, no passing lane 

 

The CORSIM results for ATS for 10% heavy vehicles followed the same trend as the 0% grade 

scenario, but the values for ATS were much lower. These low ATS values are caused by slow-

moving trucks in the traffic stream due to the grade. Even for low traffic volumes, there are few 

opportunities to pass because the vehicles in the opposing direction are on a 6% downgrade. 

They are traveling at high speeds so vehicles cannot be in the opposing lane very long before the 

oncoming vehicle approaches and, as a result, vehicles in the major direction have inadequate 

time to pass. For a flow rate of 200 veh/h, the CORSIM ATS for a 50/50 split was higher than the 

CORSIM ATS for a 60/40 split and a 70/30 split. In order to further investigate the CORSIM 

PTSF and ATS results for 10% heavy vehicles on a 6% grade, two additional splits, 40/60 and 

30/70, were analyzed. The results are shown in Figure 4-11 and Figure 4-12. 
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Figure 4-11. PTSF vs. two-way flow rate - 6% grade, 0%NPZ, 10%HV, no passing lane 

 

 
Figure 4-12. ATS vs. two-way flow rate - 6% grade, 0%NPZ, 10%HV, no passing lane 
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4.2.3 50% no-passing zone with 0% grade test results 

 

The 2010 HCM and CORSIM followed the same trend for 50% no-passing zones as for the 

corresponding 0% no-passing zone plots for PTSF for both 0% and 10% heavy vehicles as 

shown in Figure 4-13 and Figure 4-14. However, the HCM 70/30 split has more separation from 

the other splits for CORSIM and the HCM than in the 0% no-passing zone case. This is 

especially true at the flow rate of 2200 veh/h. The HCM and CORSIM followed the same trend 

for 50% no-passing zones as for the corresponding 0% no-passing zone plots for ATS for both 

0% and 10% heavy vehicles as shown in Figure 4-15 and Figure 4-16. 

 

 
Figure 4-13. PTSF vs. two-way flow rate - 0% grade, 50%NPZ, 0%HV, no passing lane 

 
Figure 4-14. PTSF vs. two-way flow rate - 0% grade, 50%NPZ, 10%HV, no passing lane 
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Figure 4-15. ATS vs. two-way flow rate - 0% grade, 50%NPZ, 0%HV, no passing lane 

 
Figure 4-16. ATS vs. two-way flow rate - 0% grade, 50%NPZ, 10%HV, no passing lane 
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For 10% heavy vehicles, the HCM and CORSIM followed the same trend for 50% no-passing 

zones as for the corresponding 0% no-passing zone plots. However, the HCM curves have more 

separation between themselves and the CORSIM 60/40 split is more separated from the 

CORSIM 70/30 split at the flow rate of 200 veh/h. The CORSIM PTSF values for the 50/50 and 

70/30 split are higher than for the 0% no-passing zones case and the 60/40 split is lower for the 

flow rate of 200 veh/h. The PTSF plots are shown in Figure 4-17 and Figure 4-18. 

 

 
Figure 4-17. PTSF vs. two-way flow rate - 6% grade, 50%NPZ, 0%HV, no passing lane 

 

 
Figure 4-18. PTSF vs. two-way flow rate - 6% grade, 50%NPZ, 10%HV, no passing lane 
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The ATS plots for 0% and 10% heavy vehicles are similar to the 0% no-passing zones case. For 

10% heavy vehicles, the ATS value for the CORSIM 60/40 split is about 5 mi/h higher at the 

flow rate of 200 veh/h than for 0% no-passing zones. The ATS plots are shown in Figure 4-19 

and Figure 4-20. 

 

 

Figure 4-19. ATS vs. two-way flow rate - 6% grade, 50%NPZ, 0%HV, no passing lane 

 

Figure 4-20. ATS vs. two-way flow rate - 6% grade, 50%NPZ, 10%HV, no passing lane 
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4.2.5 100% no-passing zone with 0% grade test results 

 

The HCM and CORSIM PTSF curves are much closer together for 100% no-passing zones for 

both 0% and 10% heavy vehicles than for the 50% no-passing zone case. The HCM 50/50 split 

shows the highest separation from the other curves. The HCM curves level off at lower PTSF 

values than the other two no-passing zone scenarios. The highest PTSF value reached for both 

heavy vehicle percentages is near 95% rather than 100%. PTSF shows improvement for 100% 

no-passing zones because the value for the no-passing zone adjustment factor must be 

extrapolated from Exhibit 15-21 in the 2010 HCM when the two-way flow rate is greater than 

the highest value in the table. This could potentially lead to a negative no-passing zone 

adjustment factor, which would cause the PTSF to improve. The PTSF plots are shown in Figure 

4-21 and Figure 4-22. The HCM and CORSIM followed the same trend for 100% no-passing 

zones as for the 0% and 50% no-passing zone cases for ATS for both 0% and 10% heavy vehicles 

The ATS plots are shown in Figure 4-23 and Figure 4-24. 

 

 

Figure 4-21. PTSF vs. two-way flow rate - 0% grade, 100%NPZ, 0%HV, no passing lane 
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Figure 4-22. PTSF vs. two-way flow rate - 0% grade, 100%NPZ, 10%HV, no passing lane 

 

 

Figure 4-23. ATS vs. two-way flow rate - 0% grade, 100%NPZ, 0%HV, no passing lane 
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Figure 4-24. ATS vs. two-way flow rate - 0% grade, 100%NPZ, 10%HV, no passing lane 
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Figure 4-25. PTSF vs. two-way flow rate - 6% grade, 100%NPZ, 0%HV, no passing lane 

 

Figure 4-26. PTSF vs. two-way flow rate - 6% grade, 100%NPZ, 10%HV, no passing lane 
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Figure 4-27. ATS vs. two-way flow rate - 6% grade, 100%NPZ, 0%HV, no passing lane 

 

Figure 4-28. ATS vs. two-way flow rate - 6% grade, 100%NPZ, 10%HV, no passing lane 
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improvements as high as 17%, which were higher than the HCM’s greatest improvements at 

13%. The CORSIM results showed that the total PTSF improvements increased as the 

percentage of no-passing zones increased and that the improvements were greater for lower flow 

rates.  

 

The performance measures for the passing lane scenarios were analyzed using CORSIM based 

on the position along the highway in order to evaluate how a passing lane affects PTSF and ATS. 

Since the no-passing-lane scenarios did not show much variation between splits, only the 60/40 

split scenarios were plotted. This split was chosen to be plotted because it is the median between 

the perfectly even distribution of 50/50 and the biased distribution of 70/30. 

 

The ATS values decreased at the passing lane link for all no-passing zone cases for the higher 

volumes. This is counterintuitive, but there is a logical explanation. For the higher volumes such 

as 2200 veh/h and 3200 veh/h, most of the vehicles are in platoons throughout the entire facility 

because of a slower truck. Most of the vehicles in the platoons are passenger cars, which are 

capable of traveling at much higher speeds than trucks, especially when there is a 6% grade. As 

soon as the platoon reaches the passing lane section, most of the slow trucks move to the outside 

lane and the cars that have been following are able to travel through at their desired speeds. 

Eventually, the trucks reach the end of the passing lane section and have to merge back into the 

original lane. When a truck merges back in from the passing lane and continues onto the next 

link, the cars are trapped again in a platoon behind the truck as shown in Figure 4-29. The cars 

are almost at a complete stop and back up onto the passing lane link. The link directly after the 

passing lane link acts as a bottleneck. The plots for each no-passing zone case are discussed in 

the following sections. 

 

 
Figure 4-29. Passing lane bottleneck 
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For 0% grade, the PTSF values increased as flow rate increased for both heavy vehicle 
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lane location. This happens because the slow trucks move into the right-hand lane and the cars 

are able to travel through at their desired speeds. The effects of the PTSF reduction lasted further 

downstream of the passing lane location for the lower flow rates. Overall, the PTSF values were 

higher for the 10% heavy vehicles case. The plots are shown in Figure 4-30 and Figure 4-31. 
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Figure 4-30. PTSF vs. distance - 0% grade, 0%NPZ, 0% HV, passing lane 

 

Figure 4-31. PTSF vs. distance - 0% grade, 0%NPZ, 10% HV, passing lane 
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The ATS curves are bunched close together for 0% grade. The passing lane does not have a large 

impact on speed. There was a slight increase in the ATS values after the passing lane for the flow 

rate of 700 veh/h. The ATS values were basically unchanged after the passing lane for the flow 

rate of 200 veh/h. All other flow rates had an ATS drop at the passing lane location. This happens 

at the higher flow rates because, when trucks merge back into the original lane, the cars are 

forced to slow down and become part of a slow-moving platoon again. Since the passenger cars 

are able to travel fast on the passing lane link, they arrive quickly and frequently at the end of 

that link, but they get backed up because of the slow-moving trucks at the beginning of the next 

link. The ATS plots are shown in Figure 4-32 and Figure 4-33. 

 

 
Figure 4-32. ATS vs. distance - 0% grade, 0%NPZ, 0% HV, passing lane 
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Figure 4-33. ATS vs. distance - 0% grade, 0%NPZ, 10% HV, passing lane 
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Figure 4-34. PTSF vs. distance - 6% grade, 0%NPZ, 0% HV, passing lane 

 
Figure 4-35. PTSF vs. distance - 6% grade, 0%NPZ, 10% HV, passing lane 
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section, which creates a shockwave upstream. The passenger cars are suddenly free to travel at 

their desired speeds. Passing lanes are a more effective highway improvement method for low 

flow rates. The plots are shown in Figure 4-36 and Figure 4-37. 

 

 
Figure 4-36. ATS vs. distance - 6% grade, 0%NPZ, 0% HV, passing lane 

 
Figure 4-37. ATS vs. distance - 6% grade, 0%NPZ, 10% HV, passing lane 
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2. 50% no-passing zones 

For the 0% grade, the trends are almost the same as for 0% no-passing zones. However, 

the PTSF values increased for the first four links in the 50% no-passing zone case whereas the 

values decreased in the 0% no-passing zone case until the vehicles reached the passing lane. The 

values increase because the platoons grow larger as the vehicles move through the facility. In the 

0% no-passing zone case, the values decreased before the passing lane because the opposing 

flow rate was low enough that the following vehicles could make use of the passing zones. For 

the 50% case, passing was not allowed on the links leading up to the passing lane section. 

Therefore the PTSF values grew larger and larger until the passing lane relieved the following 

vehicles. There was no major difference between the 0% and 10% heavy vehicles cases as shown 

in Figure 4-38 and Figure 4-39. 

 

 
Figure 4-38. PTSF vs. distance - 0% grade, 50%NPZ, 0% HV, passing lane 
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Figure 4-39. PTSF vs. distance - 0% grade, 50%NPZ, 10% HV, passing lane 
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Figure 4-40. ATS vs. distance - 0% grade, 50%NPZ, 0% HV, passing lane 

 
Figure 4-41. ATS vs. distance - 0% grade, 50%NPZ, 10% HV, passing lane 
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corresponding 0% no-passing zone case except the 200 veh/h curve only returns to 67.4% by the 

end of the facility rather than 73% as it did for 0% no-passing zones. The plot is shown in Figure 

4-43. 

 

 
Figure 4-42. PTSF vs. distance - 6% grade, 50%NPZ, 0% HV, passing lane 

 
Figure 4-43. PTSF vs. distance - 6% grade, 50%NPZ, 10% HV, passing lane 
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For the 6% grade, the ATS plots have the same general trend as in the 0% no-passing zone case 

for 0% heavy vehicles. The curve for the flow rate of 3200 veh/h drops to a lower value at the 

passing lane than it did in the 0% no-passing zone case and the 200 veh/h flow curve increases 

after the passing lane as shown in Figure 4-44. For 10% heavy vehicles, the ATS values reached 

the highest point on the link after the passing lane for the flow rate curve for 200 veh/h. That link 

is a passing zone and the vehicles that come from the passing section have just gotten away from 

slow trucks. The combination of these two factors is the cause of the ATS highpoint happening 

on link 6. For the flow curves for 2200 veh/h and 3200 veh/h, the highest point occurs on link 4, 

which is the link just before the passing zone section. The traffic is extremely congested prior to 

the passing lane because of the few trucks in the traffic stream impeding all of the other vehicles. 

As soon as a slow truck reaches the passing lane, the other vehicles are unimpeded and begin 

traveling at high speeds. This creates a shockwave that propagates through the links prior to the 

passing lane and link 4 is affected as shown in Figure 4-45. 

 

 
Figure 4-44. ATS vs. distance - 6% grade, 50%NPZ, 0% HV, passing lane 
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Figure 4-45. ATS vs. distance - 6% grade, 50%NPZ, 10% HV, passing lane 
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Figure 4-46. PTSF vs. distance - 0% grade, 100%NPZ, 0% HV, passing lane 

 
Figure 4-47. PTSF vs. distance - 0% grade, 100%NPZ, 10% HV, passing lane 
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Figure 4-48. ATS vs. distance - 0% grade, 100%NPZ, 0% HV, passing lane 

 

Figure 4-49. ATS vs. distance - 0% grade, 100%NPZ, 10% HV, passing lane 
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of 200 veh/h return quickly to the values they were at before the passing lane section. The plots 

are shown in Figure 4-50 and Figure 4-51. 

 

 
Figure 4-50. PTSF vs. distance - 6% grade, 100%NPZ, 0% HV, passing lane 

 
Figure 4-51. PTSF vs. distance - 6% grade, 100%NPZ, 10% HV, passing lane 
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For 6% grade, The ATS trends and values are about the same as for the 50% no-passing zone 

case for 0% heavy vehicles. For 10% heavy vehicles, the curve for the flow rate of 200 veh/h 

decreases more sharply after the passing lane section than it does in the 50% no-passing zone 

case and it decreases to a lower speed by the end of the facility than in the 50% no-passing zone 

case. The ATS plots are shown in Figure 4-52 and Figure 4-53. 

 

 

Figure 4-52. ATS vs. distance - 6% grade, 100%NPZ, 0% HV, passing lane 
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Figure 4-53. ATS vs. distance - 6% grade, 100%NPZ, 10% HV, passing lane  
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CHAPTER 5 SUMMARY AND RECOMMENDATIONS 
 

5.1 Summary 

 

In this project, based upon the new two-lane highway simulation capability in CORSIM, the 

previous methodology for two-lane highway facility analysis developed by Yu and Washburn 

(2009) was updated. The new methodology retains the concept of facility segmentation from the 

previous methodology, but was developed in a different way. First, the testing facility, which 

included both two-lane highway segments and a signalized intersection, was established 

integrally in CORSIM, while the previous methodology used a hybrid simulation approach. 

Second, the algorithms used to determine upstream and downstream intersection influence areas 

were developed based upon individual vehicle trajectories, instead of aggregate link performance 

that was used in developing the previous methodology. 

 

The service measure, percent delay, proposed in the previous methodology was examined and 

verified for its efficacy in determining the level of service of a two-lane highway facility 

including signalized intersections. A percent delay based LOS criteria derived from simulation 

results is proposed. In addition, guidance for facility segmentation when speed limit reductions 

are applied in the vicinity of a signalized intersection is provided. 

 

The application of the methodology can be extended to other complex two-lane highway 

facilities that include not only signalized intersections, but also other features (e.g., passing 

lanes). 

 

It is also concluded that follower density, which reflects the levels of flow rate, speed, and 

percentage of followers, can be an efficient service measure for uninterrupted two-lane highway 

facilities, as the simulation experiment results indicate that the relationship between follower 

density and flow rate is closest to a linear relationship, compared with the performance measures 

of average travel speed, percent time-spent-following, and percent free-flow speed. 

 

Furthermore, in this project, a number of experiments were executed with the new version of 

CORSIM to determine the basic relationship between “percent time-spent-following” and traffic 

flow rate and “average travel speed” and traffic flow rate, the two primary performance measures 

in the HCM 2010 two-lane highway analysis methodology. The experiment results show that the 

speed-flow relationship between the HCM and CORSIM did not match up well. Other sources 

(Luttinen 2000, Brilon and Weiser 2006) indicate that the speed-flow relationship is not linear, 

and CORSIM further supports those claims. Therefore, the HCM methodology should be 

modified so that the speeds level off as the flow rate increases. The difference between the PTSF 

results was found to be minimal, even though the two tools (the HCM methodology and 

CORSIM) have different procedures for calculating the PTSF. The HCM method uses a 

regression equation for finding PTSF that is based on TWOPAS simulation results. CORSIM 

provides a true estimate of PTSF in that it records every vehicle’s follower status at every time 

step and finds the percentage of time that each vehicle was in a following state. Then, for the 

average facility PTSF, CORSIM takes the sum of the following time across all vehicles divided 
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by the sum of the time spent in the network by all vehicles. The TWOPAS simulation PTSF 

calculation is most likely similar to the one used in CORSIM, which is probably the reason for 

the small PTSF differences between the HCM and CORSIM.  This general agreement in PTSF 

results does provide some support to the validity of the HCM estimation method. 

 

For grades of 6%, the HCM and CORSIM comparison showed very different results for the no-

passing lane cases with 10% heavy vehicles. CORSIM had much higher values for PTSF and 

much lower values for ATS than the HCM for this condition. This is largely a function of the 

truck passenger-car equivalency (PCE) values in the HCM 2010 not being as punitive to traffic 

operations as the treatment of truck performance is in CORSIM. 

 

5.2 Recommendations 

 

Certainly, a very desirable future study is to use field data to validate the new methodology for 

two-lane highway facilities with signalized intersections. Due to the lack of field data in this 

study, the methodology is only validated within CORSIM. Input data, such as truck fleet 

composition, acceleration ability, and desired speed distribution, may affect the 

upstream/downstream effective length models in the methodology. Thus, adjustments might be 

necessary when applying the methodology in practice. 

 

CORSIM produces a nonlinear relationship between average travel speed and flow rate, whereas 

the HCM 2010 provides a linear relationship. This can lead to significant differences in 

simulation and HCM results for two-lane highway segments. Thus, it is recommended that field 

studies be done to further investigate the speed-flow relationship for two-lane highways. The 

HCM and CORSIM provide very similar results for PTSF.  However, research by Luttinen 

(2001) found that the HCM PTSF estimates generally overestimated the PTSF as determined 

from Finnish field data.  Again, the HCM estimation equation is based on TWOPAS simulation 

results, and the results of this study are based strictly on CORSIM simulation results.  And while 

some amount of field data was used to calibrate and validate TWOPAS, there is still clearly a 

need to do more analysis of PTSF results from field data.  It is also possible that U.S. field data 

results may compare more favorably to the simulation results due to driver behavior differences 

with Finnish drivers. 

 

The LOS criteria for two-lane highways could benefit from further investigation. Follower 

density is a promising service measure for uninterrupted two-lane highway facilities because it 

reflects flow rate, speed and percentage of followers, which are the essential factors that 

determine the performance on a two-lane highway facility, and it has a near-linear relationship 

with flow rate, as indicated by simulation results. For two-lane highway facilities with signalized 

intersections, it is proposed that follower density can serve as a supplementary performance 

measure to percent delay, which is the primary performance measure used to determine the level 

of service of such facilities.  It is also recommended that the current CORSIM control delay 

algorithm be revised to be consistent with the signalized intersection upstream/downstream 

effective length algorithms, as they share the same conceptual definition.  
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